Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные химические свойства этилового спирта

    Кроме того, Д. И. Менделеевым написано несколько статей с описанием технологии винокурения, в которых очень ярко выявлена связь этого производства с сельским хозяйством. Работы Д. И. Менделеева были продолжены затем А. Г. Дорошев-с кпм, который провел капитальное исследование физико-химических свойств спирта. Ученик Д. И. Менделеева Д. П. Коновалов предложил основные законы, управляющие перегонкой этилового спирта. Его труды продолжил М. С. Вревский, разработавший термодинамику бинарных растворов. [c.5]


    ОСНОВНЫЕ ХИМИЧЕСКИЕ СВОЙСТВА ЭТИЛОВОГО СПИРТА [c.13]

    Характеристика продукции, сырья и полуфабрикатов. Виноградное вино является алкогольным напитком, имеющим сложный химический состав. Кроме воды и этилового спирта оно содержит органические кислоты — в основном винную и яблочную, в меньшем количестве лимонную, уксусную, сахара (глюкоза и фруктоза), дубильные, красящие, экстрактивные, минеральные вещества, ферменты, витамины и др. На состав и свойства вина оказывают влияние природа исходного винограда и технология производства. [c.141]

    Этиловый спирт широко используется в промышленности в качестве растворителя для лаков, красок, в парфюмерии и в лаборатории в качестве растворителя для химических реакций и для перекристаллизаций. Кроме того, он служит сырьем для многих синтезов после того как мы изучим химические свойства спиртов (гл. 16), мы сможем лучше оценить важную роль, которую играет этиловый спирт. Для промышленных целей этиловый спирт синтезируют гидратацией этилена или ферментативным гидролизом сахара, получаемого из патоки (или иногда из крахмала) в основном его получают из нефти, сахарного тростника и различных зерновых культур. [c.485]

    Если в качестве растворителя использовать химическое соединение, отличающееся более слабыми кислыми свойствами по отношению оснований, чем вода, например апротонный растворитель, каким является бензол, или протофильный растворитель, каким является этилендиамин, или смесь апротонного растворителя с протофильным растворителем или амфипротный растворитель с менее выраженными -кислыми свойствами, чем у воды, например этиловый спирт, то основная реакция (1) протекает количественно, а реакция (2) протекает в незначительной степени или не протекает совсем. Благодаря этому многие кислоты, не титруемые в водной среде, могут быть успешно оттитрованы в апротонном, протофильном, амфипротном растворителях или в их смесях. [c.45]

    Для этих спиртов присущи способы получения и химические свойства, которые характерны для алифатических спиртов. Эти спирты представляют практический интерес, поскольку в свободном виде и в виде эфиров широко распространены в растительном мире и часто в виде сложных эфиров применяются в парфюмерии из-за приятного запаха. Например, бензиловый спирт в свободном виде или в виде эфиров встречается в масле жасмина. р-Фенил-этиловый спирт является основной составляющей в розовом масле. [c.76]


    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    На основании своих работ по металепсии (1834 г.) Дюма утверждал, что не отдельные радикалы, а тип органического соединения обусловливает его свойства. Типы, по Дюма, могут быть двух видов— химические и механические. К одному и тому же химическому типу относятся вещества, обнаруживающие аналогию в химических свойствах, например уксусная и хлоруксусная кислоты. К одному и тому же механическому типу Дюма относил соединения, имеющие,оди-наковое число атомов, но различные химические свойства, например уксусная кислота и этиловый спирт . Представление о химических типах явилось весьма плодотворным в последующие десятилетия работы химиков были направлены к отысканию основных химических типов органических соединений. Было показано, что реакции многих органических веществ обнаруживают большое сходство с реакциями простейших неорганических соединений, из которых они могут быть выведены путем замены атомов водорода углеводородными группами. Так, при замене последними атомов водорода воды или аммиака могут быть выведены соответственно спирты и эфиры (тип [c.18]

    Сульфитно-дрожжевая бражка (СДБ). При сульфитной варке целлюлозы образуется сульфитный щелок, содержащий наряду с другими веществами моносахариды (до 15—20%). Сульфитные щелока обычно используют для получения этилового спирта и других продуктов. После химической или биохимической переработки щелока остается продукт, называемый бражкой. Его упаривают, в результате чего образуется концентрат сульфитно-дрожжевой бражки (СДБ). Этот продукт, обладающий высокими поверхностно-активными свойствами, содержит в основном соли лигносульфоновых кислот. [c.240]

    Время от времени в литературе появляются сообщения о превращениях альбумина в глобулин при воздействии различных реагентов, например смеси этилового спирта с диэтиловым эфиром, гепарина и некоторых других соединений. Само собой разумеется, что речь идет не о подлинном превращении такое превращение было бы невозможно, так как альбумины по своему аминокислотному составу отличаются от глобулинов (см. табл. 1). Речь может идти только о том, что при определенных экспериментальных условиях растворимость альбумина изменяется, в результате чего он по своим физико-химическим свойствам становится похожим на глобулин. Поэтому вполне возможно, что в нативной плазме крови имеется лишь небольшое количество белков и что многие из выделенных белковых фракций образованы путем соединения этих основных белков с липидами, углеводами, друг с другом, а также с некоторыми ионами. [c.178]


    Наиболее важные исследования физико-химических свойств этилового спирта я его водных растворов выполнены А. Г. Дорошевским 19]. Д. П. Коновалов открыл основной закон, которому подчиняется Процесс перегонки, н изучил давление паров спирта. Эту работу продолжил М. С. Вревский [5]. [c.4]

    В книге в доступной форме описан промышленный про цесс прямой каталитической гидратации этилена в этиловы спирт. Приведен краткий обзор других важнейших методов получения спирта и показано преимущество прямой гидрата ции. Указаны возможности усовершенствования процесса Приведены физико-химические свойства этилового спирта охарактеризовано сырье для его производства. Основное вни мание уделено описанию технологических схем освещень правила эксплуатации производства уделено внимание ана литическому контролю производства и те.хнике безопасности Книга является пособием для аппаратчиков нефтехимиче ских заводов. Она может быть полезна учащимся химических техникумов и профессионально-техничесмих училищ. [c.2]

    Вино получают сбраживанием виноградного сока, а пиво — сбраживанием сахаров, содержащихся в пророщенном зерне (сусле). У пива и вина есть некоторые общие органолептические свойства, так как в них содержатся общие продукты брожения — этиловый спирт, сложные эфиры, придающие спиртным напиткам фруктовые оттенки, алифатические кислоты, высшие спирты, соединения серы, альдегиды и т. п. При производстве пива ячмень проращивают в ходе солодоращения, измельчают, затирают в горячей воде и затем кипятят с хмелем для получения сусла. Вкус и аромат пива и его дистиллятов отличаются от вкуса и аромата вина и его дистиллятов — в основном вследствие происходящих в ходе солодоращения ферментативных изменений и под действием температуры при сушке солода и кипячении сусла. Хотя в пиве было выявлено свыше 800 летучих соединений, лишь несколько из них формируют характерный вкус и аромат пива. На содержание и состав образующихся вкусо-ароматических соединений влияют температура и продолжительность сушки солода, а также содержание в нем влаги. При кипячении сусла и брожении многие вкусо-ароматические соединения претерпевают химические изменения [69]. [c.499]

    СУЛЬФИТНЫЙ ЩЕЛОК — раствор, образующийся при обработке целлюлозы гидросульфитом кальция Са (Н30з)2. Растворенные в С. щ. вещества — это в основном углеводы и соли лигносульфоновых кислот. Из С. щ. биохимической переработкой получают этиловый спирт, белковые дрожжи, антибиотики, органические кислоты, растворители, многоатомные спирты химической переработкой — ванилин, фенолы, ароматические кислоты. Упаренный после биохимической переработки С. щ., т. наз. сульфитно-спиртовую барду, применяют в качестве клеящего, пластифицирующего, диспергирующего и дубящего средств. При переработке 1 т целлюлозы образуется 8—9 м С. щ., из которого можно получить 100—110 кг белковых кормовых дрожжей или 80—100 л этилового спирта и 35—40 кг дрожжей, а также 1—1,2 т концентрата сульфитно-спирто-вой барды. При хлорировании обессахаренного С. щ. образуется препарат, обладающий сильными антисептическими, дезинсектирующими и гербицидными свойствами. [c.241]

    Хотя принцип химического строения уже давно лежит в основе мышления химика, тем не менее многие основные понятия органической химии традиционно определяются, исх )дя не из строения, а из состава орга,нических соединений. Это в первую очередь относится к гомологии. Распространено определение, согласно которому два соединения гомологичны, если они сходны по свойствам и отличаются по составу на гомологическую разницу СНа, взятую п раз. Понятие сходства произвольно, в некоторых отношениях гомологи могут обладать разными свойствами (например, физиологическое действие метилоиого и этилового спирта) на группу СНа могут отличаться по составу соединения, которые никак не назовешь гомологами, например, ароматический бензол и непредельный циклогептатриен. Совершенно ясно также, что накоплением групп СНа не исчерпываются способы регулярного усложнения органических соединений, поскольку органическая химия знает и другие закономерно построенные ряды с иной гомологической разни- [c.13]

    Тинкториальные свойства клеток, т. е. способность окрашиваться анилиновыми красками, широко применяемыми в микробиологии, также зависят от свойства клеточных стенок. В 1884 г. датским ученым Гра-мом был предложен метод окраски бактерий основными анилиновыми фиолетовыми краска.ми (генциан-виолет или кристаллвиолет) с последующей обработкой раствором Лю-голя, представляющим собой раствор йода в йодистом калии. При погружении окрашенных препаратов в этиловый спирт одни бактерии обесцвечиваются — грамотрицательные, другие остаются фиолетовыми — грамположительные. Для удобства наблюдения препараты с грамотрицательными бактериями докрашиваются нейтральротом, са-фронином или очень слабым раствором фуксина, после чего они приобретают красный цвет. Несмотря на пользование этид методом на протяжении 90 лет, химический смысл реакции до сих пор не вполне выяснен. И тем не менее эмпирический критерий окрашиваемости по Граму стал таксономическим признаком для бактерий, а разделение всех бактерий на грамположительные и грамотрицательные стало классическим и представляет собой одну из первых ступеней в идентификации бактериальных культур. [c.20]

    На основе опытных данных можно полагать, что при преобладающей внутренней диффузии скорость процесса адсорбции в основном зависит от структуры сорбента, от физико-химических свойств сорбтива и от его концентрации она также будет зависеть от расхода сорбента Ь (или от времени контакта). Влияние последнего параметра входит, как у ке от-мочалось в критерий обратного иороноса К ь. На рис. 1 представлена зависимость критерия K от К т для различных систем сорбент—сорбтив (АГ-3—бопзол, АГ-3—этиловый спирт). Из графического анализа найдена следующая степень показателя при критерии К ь. [c.379]

    А. Т. Давыдов изучал ионный обмен в воде, в неводных и смешанных растворителях. Он исследовал термодинамику ионного обмена, закономерности полиионного обмена, зависимость величины сорбции и энергии обмена ионов от температуры, дал оценку точности определения констант ионного обмена, исследовал статику ионообменной сорбции анионов, выяснил влияние амфотерных растворителей на сорбируемость разновалентных ионов (спирт, диоксан), влияние химических свойств растворителей, их кислотности и основности на обмен противоионов (уксусная кислота, этиловый спирт, диметилформамид, пиридин, муравьиная кислота), обмен [c.71]

    Кристаллический порощок белого цвета. Плотность 1,33 г/си . Температура плавления химически чистого равна 206°С, технического продукта 196 " С (185—192 °С). Хорощо растворим в хлороформе, бензоле, трудно растворим в бензине, очень трудно растворим в этиловом спирте и нерастворим в воде. Активируется ускорителями основного характера. В комбинации с каптаксом применяется при воздушно-котловой и прессовой вулканизации. В комбинации с тиурамом Д и ДФГ применяется для зготовлення прозрачных тонкостенных изделий. В присутствии акиси цинка и каптакса вызывает преждевременную вулканизацию, добавка ускорителя 808 позволяет избежать этого. Оптимальная дозировка для резиновых смесей с канальной газовой сажей составляет 0,45—0,50 вес. ч. в присутствии 2,5 вес. ч. серы. В смесях на бутадиен-нитрильном каучуке в отсутствие серы действует как вулканизующий агент, давая резины с высокими физико-механическими свойствами. [c.40]


Смотреть страницы где упоминается термин Основные химические свойства этилового спирта: [c.107]    [c.156]    [c.20]    [c.240]    [c.28]   
Смотреть главы в:

Перегонка и ректификация этилового спирта -> Основные химические свойства этилового спирта




ПОИСК





Смотрите так же термины и статьи:

Спирт химический

Спирты химические свойства

Химические свойства этилового спирта

Этиловый спирт



© 2024 chem21.info Реклама на сайте