Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытие иридием

    Неоднократно предлагали использовать металлические электроды для электролиза соляной кислоты [23] катоды из стали, никелированной стали или сплавов никеля [25—26], а также покрытые активным слоем мелкодисперсного серебра [24] предлагали использовать и металлические аноды с покрытиями из иридия или сплавов платины с иридием [27]. Однако о практическом применении металлических анодов в промышленном электролизе соляной кислоты сведения отсутствуют. Отсутствие металлов, достаточно стойких в среде горячей соляной кислоты, делает сомнительным целесообразность применения металлических электродов в этом процессе. Из электродных материалов только графит удовлетворяет основным требованиям, предъявляемым к электродным материалам. Он достаточно стоек при анодной и катодной поляризации в горячей концентрированной соляной кислоте, имеет сравнительно хорошую электропроводность и невысокую стоимость [22]. [c.286]


    Много работ посвящено изучению стойкости платины и других металлов платиновой группы при анодной поляризации их в растворах хлоридов. Исследовалось электрохимическое поведение титана, покрытого платиной, родием, иридием [152, 153], а также сплавами платины с иридием [154] и сплавами с палладием [155, 156]. Сплавы платины с иридием отличаются от чистой платины значительно большей стойкостью при электролизе. Так, при электролизе 32%-ной соляной кислоты доля тока, расходуемая на растворение платинового анода, составляет около 5%, а при применении сплава из платины, с 10% иридия эта доля снижается до 0,9% [157]. [c.76]

    Покрытия иридия на вентильных металлах целесообразны в тех случаях, когда нри повышенной температуре или критическом составе среды скорость коррозии платины получается слишком большой. Впрочем, обычно ограничиваются применением платиноиридиевого сплава, содержащего около 30 % 1г поскольку покрытие вентильных металлов чистым иридием в технологическом отношении гораздо более сложно. По той же причине не нашли распространения и другие благородные металлы, например родий [211. Цены платины и иридия в настоящее время уже существенно не различаются. [c.206]

    ПОКРЫТИЯ ИРИДИЕМ и ЕГО СПЛАВАМИ [c.190]

    Электролитические покрытия иридием [c.274]

    Много работ посвящено изучению стойкости платины и других металлов платиновой группы при анодной поляризации в различных электролитах [38]. Исследовалось электрохимическое поведение титана, покрытого платиной, родием, иридием [39, 40], а также сплавами платины с иридием [41] и с палладием [26, 42]. [c.144]

    МХП применяется при определении ртути в загрязненных морских водах в варианте проточно-инжекционной генерации паров восстановленной ртути и их улавливания в графитовых кюветах, покрытых иридием, вольфрамом и цирконием. ПО для общей и органической ртути при использовании кюветы, покрытой иридием, составляет 90 и 60 нг/л соответственно. Для адсорбции паров ртути на графитовых трубках для покрытия подходят [c.103]

    Коррозионная стойкость металлов в атмосфере, равно как и в других коррозионных средах, нередко определяется их термодинамической стабильностью [17]. К металлам высокой термодинамической стабильности, которые не корродируют в большинстве природных сред, относятся металлы платиновой группы (рутений, осмий, родий, иридий, палладий, платина), золото и до некоторой степени — серебро. Большинство этих металлов используют главным образом в ювелирной промышленности или в качестве покрытий специального назначения. [c.89]


    Гальванические покрытия иридием отличаются значительной твердостью и стойкостью к окислению при высоких температурах. В связи с химической стойкостью и трудностью перевода металлического иридия в растворимые соли большой интерес представляет способ приготовления электролитов для осаждения иридия путем растворения металлического иридия в кислотах при воздействии 98 [c.98]

    ПОКРЫТИЯ ОСМИЕМ, ИРИДИЕМ, ПЛАТИНОЙ И СПЛАВАМИ НА ИХ ОСНОВЕ [c.190]

    Родий и палладий, обладающие высокой отражательной способностью, применяют для покрытия зеркал рефлекторов. Эти покрытия, в отличие от серебра, не тускнеют. Сплавы иридия с осмием, обладающие высокой твердостью, служат для изготовления трущихся деталей морских компасов, часовых механизмов, термоэлементов и т. д. Платина и в особенности палладий, благодаря высокой адсорбционной способности, ускоряют разнообразные химические процессы и п первую очередь реакции, протекающие при участии газообразного водорода. [c.500]

    Использование анодов из титана с активным покрытием из смеси оксидов рутения и титана (ОРТА), либо нз платины или платины с иридием, позволило значительно интенсифицировать хлоратные электролизеры за счет повышения плотности тока (до 3 кA/м ) при одновременном снижении удельных затрат электроэнергии на процесс. [c.156]

    Для скоростного восстановления иридиевых покрытий толщиной > 1 мкм применяют бромидный электролит, содержащий бромид иридия (5- 10 г/л) и бромистоводородную кислоту (40—45 г/л). Режим электролиза температура электролита 70—75°С, к = 0,15 0,2 А/дм . Т1к = 45%, скорость осаждения 1—2 мкм/ч, аноды — из платины. Покрытие получается серовато-белым матовым. При меньшем содержании бромида иридия в электролите и 75 —80°С осадки становятся блестящими. [c.191]

    В качестве коррозионно-стойких металлических покрытий используются даже такие дорогостоящие и экзотические, как покрытия сплавами платина-иридий, золото-платина, а также золотом, платиной, родием. Однако и такие покрытия не всегда проявляют достаточную коррозионную стойкость при высоких температурах и давлениях. Отмечаются, в частности, коррозия платиновых покрытий в 0,1 М растворе хлористо-водородной кислоты при 150 С и коррозия платины и сплава золото-платина в воде при 315 °С и в паре [c.151]

    Покрытия осмием, иридием, платиной и сплавами иа их основе [c.192]

    Расход платины увеличивается при перерывах в процессе электролиза. При длительной работе без перерывов расход платины значительно уменьшается. При использовании сплавов платины с иридием можно сократить удельные расходы платины. Высокая стойкость платины позволяет применять в ПТА платиновые покрытия небольшой толщины (2—3 мкм). [c.139]

    Иридий применяют в качестве гальванического покрытия, наносимого на металлы и керамику. На него не действуют ни обычные кислоты, ни царская водка. Соляная кислота, содержащая кислород, разъедает его при нагревании до 125°С. При высоких температурах на иридий действуют все галогены. В расплавленных щелочах и в перекиси натрия он окисляется быстро. [c.27]

    Режим электролиза температура электролита 20-60°С, ik = 0,I-h -г 0,5 А/дм , анод — из платины или иридия, Т1к = 30 60%, Sa Sk = 2 1. При этих условиях получают светлые и надежно сцепленные с основой полублестящие покрытия. Выход по току с увеличением падает. При = = 0,1 А/дм Т1к = 60%, а при 0,3 А/дм Т1к = 30%. Увеличение концентрации хлорида иридия и сульфаматной кислоты способствует повышению рабочих плотностей тока и [c.191]

    Рений служит заменителем иридия в платиновых сплавах (при изготовлении электродов, термопар). Прибавка рения к вольфраму делает нить накаливания в электролампах более долговечной. Сплавы W Не приобретают в технике большое значение как весьма стойкие против эрозии (изъявления металлов). Рений дает блестящие антикоррозионные покрытия (ренирование). Из железных листов, ренированных электролитическим путем, изготовляют цистерны и баки для перевозки соляной кислоты. [c.534]

    Платину применяют для покрытия электрических контактов, для защиты серебра от потемнения и титановых анодов. Пла тиновые покрытия стойки в химически агрессивных средах и не окисляются при нагревании до 1100 С. Покрытия платиной толщиной 2 — 20 мкм используют для покрытия деталей приборов, работающих при высокой температуре или в коррозионной среде. Тонкие покрытия толщиной до 0,5 мкм применяют для изготовления отражателей. Коэффициент отражения платины в видимой части спектра составляет 70%, а в инфракрасной — до 96%. По сравнению, с палладием и родием платину значительно меньше используют в промышленности. Это обусловлено ее высокой стоимостью и дефицитностью, а также трудностью получения не пористых платиновых покрытий. В 1966 г. на мировом рынке платина была в 4,3 раза дороже золота (иридий в 5,8 раза, а осмий в 7,5 раз). [c.191]


    ДНисп 610 кДж/моль 5 ,, 35,4 Дж/(моль-К). Степень окисл. -ЬЗ и +4, реже О, -Ы, +2, -1-5, -Ьб. Компактный 1г устойчив на воздухе до 2300 °С не взаимод. с к-тами, включая царскую водку, и щелочами порошкообразный 1г медленно взаимод. с расплавл. NajOj, ВаОг, при нагрев.— с Fj, СЬ, Вгз, Оз, S, Se, Те, Р. Получ. концентраты после переработки шламов электрорафинирования черновых меди и никеля или минералы из группы осмистого иридия спекают с ВаОз, растворяют в НС1, добавляют царскую водку, отгоняют 0s04 и из р-ра осаждают (КН4)2[1гС1б], к-рый затем прокаливают до 1г. Примен. для нанесения защитных покрытий на электроконтакты, пром. аппараты для изготовления тиглей (для варки лазерных материалов и искусств, полудрагоценных камней), электродов и термопар компонент сплавов с Pt, Pd (для тензодатчиков, резисторов, токосъемников, химически стойкой посуды), с Os (для опорных штифтов точных приборов), с Os и Ru (для шариков и перьев авторучек). Н. М. Синицын. [c.228]

    На рис. 118 изображена кормовая сборка ТТУ и показано расположение агрегатов системы управления вектором тяги, а на рис. 119 показано устройство гибкого соединительного узла сопла. Соединительный узел представляет собой оболочку из гибкого эластичного материала с 10 стальными кольцевыми прокладками дугообразного сечения. Первое и последнее армирующие кольца прикреплены к неподвижной части сопла, которая соединена с корпусом двигателя. Исполнительные механизмы поворотного сопла работают от вспомогательного энергоблока [114]. Он состоит из двух отдельных гидронасосных агрегатов, которые передают гидравлическую энергию на рабочие сервоцилиндры, причем один обеспечивает поворот сопла в плоскости скольжения, а другой — в плоскости бокового разворота (рис. 120). Если один из агрегатов отказывает, гидравлическая мощность другого увеличивается и он регулирует отклонение сопла в обоих направлениях. Начиная с операции отделения ускорителя вплоть до его входа в воду, приводы поддерживают сопло в нейтральном положении. Сервоцилиндры ориентированы наружу под углом 45° к осям тангажа и рыскания летательного аппарата. Отметим, что вспомогательный энергоблок, питающий приводы системы управления вектором тяги в рассматриваемом РДТТ, работает на жидком однокомпонентном топливе — гидразине, который подвергается в газогенераторе каталитическому разложению на катализаторе в форме алюминиевых таблеток, покрытых иридием. [c.205]

    Покрытия иридием получают из электролита, содержащего аммониевохлористый иридий (10—15 г/л) и H2SO4 3 — 5 г/л). Режим электролиза температура электролита 20 С, i = I + 2 А/дм , Т1к = 5 -г 6%, аноды — из платины или иридия. [c.191]

    Коррозионная стойкость хроматных покрытий Иридит на различных металлах [c.656]

    Водородный электрод, показывающий достаточно постоянные значения для обычных целей, нетрудно при отовить нужно лишь электрод из хорошо платинированной платины, погруженной в 2п серную кислоту, которая почти точно 1п по отношению к Н , насытить в течение 15 минут не слишком сильной струей водорода, для того чтобы получить правильный потенциал с точностью до 0.001 вольта. Золотой электрол, покрытый иридием, устанавливается гораздо быстрее. Определение от-1ельных потенциалов и их знака является теперь в принципе весьма простым, если пренебречь разностями потенциала, могущими возникнуть в месте соприкосновения двух жидкостей. Исследуемый электрод комбинируют с нормальным водородным электродом, находящимся при той же температуре, и определяют по известному методу э. с. и направление тока этой цепи Э. с непосредственно дает величину искомого скачка потенциала электрод/раствор, и полученное значение имеет знак - -, если соответствующий электрод является катодом цепи, и знак —, если он образует анод Для большей ясности направление тока иногда еще обо-шначается стрелкой. [c.232]

    Адсорбция углерода на поверхности металлов платиновой группы тормозит реакцию термической диссоциации молекул щелочно-галоидных солей на поверхности, в результате чего снижается поток десорбируемых при этом атомных ионов щелочного металла [7]. На рис. 7 приведен график зависимости коэффициента поверхностной ионизации атомов цезия, образующихся из молекул хлористого цезия, на поверхности иридия, первоначально покрытого толстым слоем углерода. С ростом температуры происходит испарение углерода с поверхности, и величина Р изменяется от значения, соответствующего графиту Т < 1300° К), до значения, соответствующего иридию с чистой поверхностью Т 2000° К). Наименьшее значение 3 и соответственно степени диссоциации молекул на поверхности иридия получаются при монослойпом покрытии иридия углеродом Т 1800° К). [c.141]

    Платина плавится при 1769 °С. Для дальнейшего расширения шкалы можно использовать температуры плавления некоторых других металлов (родий — 1960°С, иридий — 2443°С и т. д.). Лох-ман [471] использовал эталонный оптический м,икропирометр для калибрования термопар из благородных металлов до 2200°С в высокотемпературной лабораторной печи. Несколько позже Цик и Тонсхоф [965] привели детальное описание конструкции печи (до 2400 °С) с вольфрамовыми стенками (рис. П-5). Были приняты специальные меры предосторожности для того, чтобы избежать эмиссионных коррекций для этого термопару помещали внутри черного тела — молибденового цилиндра с покрытием из ВеО. [c.64]

    В условиях проведения электролиза водного раствора Na l (270 г/л) при 80 °С и плотности тока 0,1 А/см скорость растворения платины составляет 2—5-10 А/см [161]. Очень высокая стойкость платины и ее сплавов с иридием затрудняет точное определение скорости анодного растворения активного покрытия. Исследование с применением радиоактивных изотопов платины [125, 161, 164] позволило установить скорость растворения платины в условиях анодной поляризации и влияние на нее длительности процесса электролиза, перерывов тока, значения анодного потенциала и других факторов. При удовлетворительной устойчивости платинового и особенно платиноиридиевого покрытия титана в условиях анодного выделения хлора отмечалась очень малая устойчивость таких покрытий к действию амальгамы [165]. Для защиты активного покрытия из металлов платиновой группы от разрушения при контакте с амальгамой предложено наносить на анод пористый защитный слой, например, из магнетита, титана, сульфата магния [166] или применять анод из пористого титана с нанесением активного нокры- [c.76]

    На раскаленной нити из платины или сплава платины с иридием производится каталитическое сжигание анализируемых компонентов. Для этого нить нагревается до нескольких сот градусов. Перед детектированием к газу-носптелю добавляется кислород, необходимый для горения. В результате сжигания происходит изменение температуры нити, которое, как и в ката-рометре, регистрируется в виде изменения сопротивления. Детектор имеет такую же электрическую схему, как катарометр. Шай, Секей и Трапли (1962) описывают детектор с платиновой нитью диаметром 0,050 мм, покрытой платиной и палладием в качестве катализатора. В этом случае горение начинается при 150—200°. Катализатор легко отравляется различными газами, например соединениями серы. [c.154]

    ИРИДИЯ ГЕКСАФТОРИД №, Гпл 44,1 С, Гкип 54 °С гидролизуется водой и ее парами. Получ. из элементов. Примен. для нанесения покрытий из Ir или его сплавов. ИРИДИЯ(1У) ГИДРОКСИД 1г(ОН)4, темно-синее аморфное в-во при 350 °С разлаг. с отщеплением НгО (в токе N2) не раств. в воде, реаг. с кипящей H2SO4. Получ. щел. гидролизом (КН4)2Г1гС1б]. П ромежут. продукт в произ-ве Ir и его соединений. [c.228]

    ИРИДИЯ ТЕТРАКАРБОНИЛ 1г2(СО) , желто-зеленые К )ИСТ.5 iaoar 150 °С (в атм. СО) нераств. в воде, раств. в эф., I4. Получ. взаимод. 1гС1з с СО при 200 °С и 20 МПа в присут. Си. Примен. для Нанесения покрытий Ir на металлы, керамику, стекло из газовой фазы [в смеси с 1Г4(СО),2]. [c.228]

    Анодный потенциал, измеренный на графитовом аноде в равных условиях, составляет 1,43—1,54 В, т. е. практически не отличается от потенциала на ПТА. При проведении электролиза при более высоком значении pH потенциал ПТА при плотности тока до 2000 А/м может возрастать до 1,8—2,0 В [125]. Ряд исследователей отмечали явление пассивирования платиновых анодов при электролизе раствора Na l в определенных условиях. Для активации платинового анода в этих условиях помимо ведения процесса при низком значении jpH [125] предложено применять пульсацию тока [169] либо использовать в качестве активного покрытия сплавы платины с иридием [170]. Однако для получения длительного эффекта необходимо увеличить содержание иридия до 20—30%. [c.78]

    На электролизерах БГК-17 расход платины на 1 т хлора составляет около 0,5 г [125]. Этот расход увеличивается при перерывах процесса электролиза, и, наоборот, значительно сокрап1 ается при длительной работе без перерывов. Применение сплавов платины с иридием позволяет сократить удельные расходы платины. Вследствие высокой стойкости платины в ЦТА применяются платиновые покрытия малой толщины — 2—3 мкм. Такие электроды работают [c.78]

    Другая быстродействующая рентгеновская система с бумажными копиями использует бумажную линию Индастрекс Инстант 600 фирмы Кодак . В нее входят 4 компонента специальная чувствительная бумага, два типа экранов, усиливающих изображение, процессор и два реактива для процессора. Бумага покрыта эмульсией галоида серебра, содержащей реагенты для обработки, и может подвергаться действию рентгеновских лучей в диапазоне 20-300 кВ или наиболее общих источников рентгеновского или гамма-излучения типа иридия-192 или кобальта-60. Бумага размещается так, что покрытая эмульсией сторона контактирует с усиливающим экраном когда фиксирующее устройство открывается для доступа рентгеновского излучения, экран усилителя изображения начинает излучать в ультрафиолетовом диапазоне, к которому бумага чувствительна. Бумага проходит проявление в светонепроницаемом корпусе, в результате чего получается влажно-сырая радиограмма в течение 10 с. Если это изображение гюдвергнуть закреплению, промывке и просушке, оно может сохраняться не менее 7 лет. [c.176]

    Опубликовано много работ и предложений по использованию в качестве анодного активного покрытия сплавов платины с ири-ДИ6Л1 [32, 33], палладием [34, 35], родием [36, 37], однако целесообразным является использование только сплавов с иридием. [c.144]

    Сульфаматаый электролит иридиро-вания готовят растворением иридия в сульфаминовой кислоте (50 — 100 г/л) при протекании переменного тока (l a = 20 60 А/дм ). Из этого раствора с помощью спирта выделяют сульфамат иридия в виде кристаллов. Такой электролит применяют в основном для покрытия коррозионно-стойкой стали с целью ее защиты при 600-700°С. При толщине покрытия [c.191]

    Видно, что для высокотемпературной кристаллизации круг возможных материалов весьма ограничен. По существу, наиболее пригодными являются молибден, вольфрам, их сплавы, а также иридий, платина, родий и соответствующие сплавы. В том случае, когда не удается подобрать нейтральный по отношению к расплаву материал контейнера, применяют различного рода покрытия, ослабляющие взаимодействие с расплавом. Эти покрытия должны обладать достаточно высокой механической прочностью, коэффициенты расширения покрытия и материала контейнера должны быть близки по величине. Например, покрытие молибдена карбидами или нитридами препятствует его окислению вплоть до 1400 -Ь 1500 °С. Покрытие платины иридием, а молибдена вольфрамом увеличшает срок службы контейнеров. К сожалению, в области температур около 2000 °С практтески нет покрытий, увеличивающж срок службы контейнеров. В этом случае прибегают к использованию так называемых бесконтейнерных методов выращивания монокристаллов, а также метода холодного тигля (основанного на способе гарниссажа). [c.21]


Смотреть страницы где упоминается термин Покрытие иридием: [c.105]    [c.328]    [c.145]    [c.145]    [c.204]    [c.228]    [c.569]    [c.49]    [c.44]    [c.187]   
Смотреть главы в:

Новые покрытия электролиты в гальванотехнике -> Покрытие иридием




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий-191 и иридий



© 2025 chem21.info Реклама на сайте