Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновская дифракция кристаллические системы

    После времени обработки 2 10 с наблюдаются только широкие рефлексы, соответствующие начальным фракциям титана и углерода. После 11-10 с рефлексы графита исчезают, а после 15-10 с уже появляются рефлексы, соответствующие новой фазе с кубической структурой кристаллической решетки — карбиду титана с постоянной решетки 0,4326 нм. Дальнейшее увеличение времени помола до 4-10 с приводит к полному исчезновению рефлексов от металлического титана и увеличению рефлексов от карбида титана. Увеличение времени размола до 8 Ю с ведет к уменьшению размеров кластеров и накоплению их деформации, что сопровождается уширением линий рентгеновской дифракции. Помол системы в течение 7,2 10 с приводит к формированию нанокристаллов карбида титана. Увеличение времени воздействия до 10 с не привело к изменению нанокластеров карбида титана, например к спеканию. [c.408]


    Подобраны условия выращивания кристаллов трех полиморфных модификаций глицина, различающихся системами межмолекулярных водородных связей и характером упаковки цвиттер-ионов в кристаллической структуре (спиральные цепи, одинарные складчатые слои, центросимметричные сдвоенные складчатые слои). Уточнены кристаллические структуры полученных модификаций. Исследовано полиморфное превращение Р-модификации в а-модификацию методом монокристальной рентгеновской дифракции, показано, что структура исходного кристалла нарушается в ходе фазового перехода не полностью, выявлены ориентационные соответствия между кристаллографическими осями двух фаз. Предложена модель превращения, основанная на учете роли водородных связей. [c.41]

    Для каждой кристаллической системы существует математическое соотношение между расстоянием d, индексами Миллера и -размерами осей элементарной ячейки. Если известно, с какой системой имеют дело (что часто довольно трудно установить), то из данных по дифракции рентгеновских лучей можно определить константы элементарной ячейки. Например, для ромбической системы [c.73]

    Изучение кристаллических сеток полиэтилена и натурального каучука методом рассеяния рентгеновских лучей под большими углами [11, 12] указывает на то, что увеличение плотности сшивки влечет за собой прогрессирующее расширение рефлексов от различных кристаллических плоскостей. Это может быть связано с уменьшением размеров кристаллитов, дальнейшим нарушением кристаллического порядка или с возникновением внутренних напряжений. Независимо от того, какой из этих эффектов вызывает расширение полос рентгеновской дифракции, каждый из них может понижать температуру плавления. Следовательно, главной причиной такого большого снижения температуры плавления является сильное ограничение возможности установления совершенного кристаллического порядка в системе даже после тщательного отжига. Совершенно очевидно, что это ограничение вызвано наличием сшивок. Постоянные сшивки препятствуют установлению поперечной упорядоченности при упаковке полимерных цепей, необходимой для образования достаточно больших кристаллитов. Участие в кристаллизации звеньев, смежных со сшитыми, также может быть затруднено или невозможно. Поэтому и развитие продольной кристаллической упорядоченности ограничивается в большей степени, чем это следует из простого учета концентрации сшивок. [c.159]


    Число ионов кислорода, которое может окружать элемент при образовании катиона, определяет координационное число катиона. Оно может меняться от 3 до 12. Очевидно, чем меньше катион, тем меньше его координационное число. Следовательно, исследование размеров ионов при помощи рентгеновской дифракции является неоценимым методом для получения представления о кристаллических системах. В развитии геометрических дислокаций существует тенденция представлять для катионов и анионов конфигурацию, обладающую минимумом потенциальной энергии, соответствующим нейтрализации ионных зарядов. Следовательно, кристаллические структуры должны удовлетворять геометрическим, электрическим и потенциальным энергетическим условиям. [c.12]

    Рентгенография. Для исследования твердых углеводородов и других ком-]а.-109 г8 понент нефти в кристаллическом состоянии, а также для изучения структуры катализаторов применяется метод дифракции рентгеновских лучей. Кристаллическая решетка вещества играет роль системы дифракционных решеток. [c.340]

    В наиболее элементарных изложениях, посвященных рентгеновской дифракции, рассматривается процесс отражения рентгеновских лучей от определенных плоскостей кристаллической решетки. Поскольку многие читатели, вероятно, встречались прежде с этим подходом, стоит показать, почему излагаемый выше подход является эквивалентным. Пусть узлами решетки будут вершины (узлы) элементарных ячеек. Система плоскостей решетки — это семейство наборов равноотстоящих параллельных плоскостей, проведенных так, что все узлы решетки принадлежат какому-либо члену этого семейства. Плоскости, проходящие через противоположные вершины ячеек, тоже являются таким набором (рис. 13.14./4). Данные плоскости отсекают на осях (а, Ь и с) отрезки, в точности соответствующие единичной трансляции решетки. Могут быть, однако, проведены и такие плоскости, с последовательно уменьшающимся расстоянием между ними, которые отсекают на оси а любые доли — а/2, а/3,. .., а/И — единичной трансляции (рис. 13. И, , ). [c.344]

    Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрилата при температуре ниже Го- Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов. [c.27]

    Хотя порошковые рентгенограммы широко используются для дактилоскопии веществ, их применение для определения расположения атомов ограничено главным образом простыми кристаллическими структурами, к которым относятся кубическая, гексагональная и тетрагональная системы. Для определения расположения атомов в общем гораздо удобнее использовать рентгеновскую технику с применением монокристаллов. Главное преимущество дифракции рентгеновских лучей перед другими структурными методами состоит в том, что практически во всех случаях обеспечивается прямое и единственное решение структуры. [c.579]

    Четкие результаты для большого числа белков, играющих жизненно важную биологическую роль, связанную с их нерастворимостью и механическими свойствами, были получены с помощью дифракции рентгеновских лучей, и эти результаты являются примером раннего использования техники, которая в последующее время была усовершенствована настолько, что с ее помощью были установлены полные структуры ряда кристаллических глобулярных белков. Растянутая или р-форма кератина демонстрирует пример р-слоев как с параллельным, так и с антипараллельным расположением пептидных цепей (см. рис. 23.7.4). Так, в фиброине щелка найдено только параллельное расположение этих цепей с близким к планарному расположением слоев, тогда как в кератине имеет место складчатая структура. Нерастянутая или а-форма кератина является примером а-спирали в ее наиболее компактной форме, в которой пять оборотов правой спирали включают 18 остатков аминокислот — следовательно, система может быть описана как спиральная конформация с шагом в 3,6 остатка. Из рассмотрения молекулярных моделей видно, что предпочтительна правая спиральность, поскольку по сравнению с положением в левой спирали полипептида, образованного из остатков -аминокислот, боковые радикалы в правой спирали располагаются наружу от оси спирали, так что дестабилизирующие отталкивания, затрагивающие, в частности, карбонильные группы, сводятся к минимуму (см. рис. 23.7.3). [c.428]


    Под термином блоки исследователи понимают такое пространственное расположение атомов углерода в ядерной ароматической части, при котором удовлетворяются условия дифракции и интерференции рентгеновских лучей аналогично кристаллическим структурам. В то же время блоки не являются обособленными частицами углеродистого вещества подобно кристаллам. Теоретики связывают их с надмолекулярными высокоуглеродистыми системами. [c.80]

    Наиболее существенной чертой современной модели идеального кристаллического вещества является ее трехмерная периодичность. Уже в работах Бравэ (1811—1863) модель кристаллического вещества предстала в виде решетчатой системы материальных точек и выглядела приблизительно так, как мь> видим сегодня строение молекулярного кристалла (в статическом варианте) объединенные в молекулы точечные атомы внутри идентичных элементарных ячеек. Представление о кристалле как о решетчатом расположении точечных атомов позволило Лауэ в 1912 г. предсказать, обнаружить и интерпретировать дифракцию рентгеновских лучей. Открытие Лауэ положило начало рентгеноструктурному анализу. [c.134]

    Этот метод применяется для исследования органических веществ главным образом в кристаллическом состоянии. Он основан на изучении дифракции рентгеновских лучей, проходящих через кристаллическую решетку вещества, которая играет роль системы дифракционных решеток. [c.40]

    Через узлы кристаллической решетки, в которых находятся атомы или группы атомов, можно в различных направлениях провести системы параллельных плоскостей. Рассматривая дифракцию рентгеновских, лучей на кристаллической решетке, Брэгг показал, что лучи заданной длины волны К отражаются от системы таких [c.58]

    Менее понятна ассоциация, наблюдаемая для макромолекул поливинилхлорида [958]. В этом случае нельзя использовать какие-либо ассоциаты низкомолекулярных растворенных веществ в качестве моделей, которые бы помогли получить лучшее представление об агрегации макромолекул полимера. Однако, несомненно, важен тот факт, что другие ведущие себя подобным образом полимеры, как, например, нитрат целлюлозы [128] и желатина [959], в соответствующих условиях способны образовывать термически обратимые гели. Ранее указывалось (гл. II, раздел В-7), что термически обратимое гелеобразование типично для кристаллических полимеров и что даже разбавленные гели могут проявлять четкую картину дифракции рентгеновских лучей. По-видимому, растворенные агрегаты можно считать микрокристаллитами, а их диссоциацию — процессом, аналогичным плавлению. Особенно интересные системы, для которых [c.331]

    В качестве примера изоморфизма можно рассмотреть кристаллы минералов родохрозита МпСОз и кальцита СаСОз. Как видно из рис. 4.4, кристаллы этих двух веществ очень похожи. Оба кристалла принадлежат к гексагональной кристаллической системе (см. разд. 2.5) и имеют четко выраженную ромбоэдрическую спайность. Больший из двух ромбоэдрических углов кристалла родохрозита составляет 102°50, а кальцита — 10Г55. Данные, подтверждающие изоморфность этих кристаллов, установлены более ста лет назад. После открытия дифракции рентгеновских лучей удалось убедиться в том, что эти кристаллы действительно имеют одинаковую структуру. [c.89]

    Такое же убедительное доказательство достоверности того, что составляло основу атомно-молекулярной гипотезы, было дано изучением строения кристаллов при помощи рентгеновских лучей. В 1912 г. М. Лауэ показал, что при пропускании пучка этих лучей через тонкую пластинку кристалла возникает дифракция преломленные лучи правильно распределяются по определенным законам вокруг первичного луча. Согласно Лауэ, кристаллы представляют собой дифракционные решетки для волн длина которых в 10 ООО раз меньше длины волны обыкновенного света. Экспериментальное решение проблемы, поставленной Лауэ, было дано в том же году В. Фридрихом и П. Книппингом, сконструировавшим спектрограф, позволяющий получать фотограммы или рентгенограммы, по которым можно суднть не только о кристаллической системе исследуемого тела, но и установить положение атомов в кристалле. В 1915 г. В. X. и В. Л. Брэгги, отец и сын, опираясь на идею Лауэ, изучили ту же проблему весьма чувствительным и поэтому особенно подходящим для чисто кристаллических тел методом и пришли к важным открытиям относительно их строения [c.419]

    Полимер кристаллизуется вместе с растворителем, образуя новую решетку, не типичную как для чистого полимера, так и для растворителя (например, кристаллизация поливинилхлорида при пластификации его 40% диоктилфталата). При этом возникают структуры типа кристаллосольватов. Но более явно кристаллосольваты образуются в системах, вообще не способных кристаллизоваться в отсутствие растворителя. Это явление впервые наблюдалось для по-лиокхаметилендибензимидазола (ПОМБИ) дающего картины трехмерной рентгеновской дифракции только в присутствии муравьиной кислоты удаление ее приводит к аморфизации. При добавлении к ПОМБИ уксусной кислоты получается другая кристаллическая решетка, что служит доказательством образования в некотором роде стереокомплексов полимера с растворителем. [c.129]

    В 1906 г. Чарлз Гловер Баркла установил, что различные элементы испускают определенные серии характеристических рентгеновских лучей. Уильям Генри Брэгг и его сын Уильям Лоренс Брэгг смогли объяснить это в 1912 г. дифракцией рентгеновских лучей кристаллическими веществами. В 1913 г. Генри Мозли, используя в качестве антикатодов в рентгеновских трубках различные элементы, получил по методу Брэггов эмиссионные спектры этих элементов. При этом он обнаружил, что длины волны таких рентгеновских лучей уменьшаются с увеличением атомной массы излучающего элемента. Связь между увеличением атомной массы элементов и уменьшением длины волны зависела от величины положительного заряда ядра атома. Мозли составил диаграмму и показал, что, зная длину волны рентгеновских лучей, можно рассчитать электрический заряд ядра элемента. Например, заряд ядра равен для водорода +1. гелия +2, лития +3, урана -(-92. Величина заряда ядра соответствует порядковому номеру, понятие о котором ввел Иоганнес Роберт Ридберг, чтобы исправить выявленное нарушение закономерности в расположении элементов в периодической системе. Некоторые элементы с большей атомной массой размещены в соответствии с зарядом их ядра в системе перед элементами с меньшей массой (Аг — перед К, Со — перед №, Те — перед I). Именно в этом заключается физический смысл порядкового номера элемента. [c.104]

    В качестве примера изоморфных кристаллов можно привести кристаллы минералов родохрозита МпСОз и кальцита СаСОз. Эти минералы существуют в виде очень похожих кристаллов, приведенных на рис. 4.6. Оба вида кристаллов принадлежат к одной и той же кристаллической системе (см. разд. 2.6) и имеют четко выраженную ромбоэдрическую спай-ность. Больший из двух ромбоэдрических углов кристалла родохрозита составляет 102°50, а кальцита 101°55. Эти данные, подтверждающие изо-морфность обоих кристаллов, установлены более ста лет назад. После открытия дифракции рентгеновских лучей было точно определено, что эти кристаллы имеют одинаковую структуру. [c.99]

    Полимерные цепи образуют в кристаллическом состоянии чаще спиральные, чем плоские конформации, и Натта успешно применил свои постулаты к определению кристаллической структуры ряда полимеров. К системам, слишком сложным для такого подхода, можно иногда применять приближенное рассмотрение, согласно которому главной частью рассеяния, определяющего картину рентгеновской дифракции, является рассеяние от изолированной спирали. С Te.x пор, как этот метод был предложен несколько лет тому назад Кохраном, Криком и Вандом его плодотворность была доказана анализом многих полимерных систем, как природных (например, в работах Кохрана и Крика о синтетических полипептидах), так и синтетических (например, в работах Коррадини и Ганиса и Чатани о иоли-л-ме-тилстироле). [c.170]

    На наш взгляд, причина более упорядоченной кристаллической структуры осадков Сг (ОН)з, получаемых в системе Сг (МОз)з — — NH40H — Н.,0, заключается в следующем. Поскольку в растворах зеленой и фиолетовой форм нитрата хрома равновесие устанавливается быстро [1861 и анионы N03 не входят во внутреннюю координациопную сферу комплексного катиона [187], осадки гидроокиси хрома получаются без примеси нитрат-ионов, легче рекристаллизуются, давая более крупные блоки, достаточные для появления рентгеновской дифракции. Наоборот, в растворах зеленых форм хлорида [188] и сульфата [189, 190] хрома комплексные катионы связаны с координированными анионами СР и 504 , способствующими осаждению рентгеноаморфной гидроокиси хрома. Переход зеленых форм хлорида [1911 и сульфата [192, 193] хрома в фиолетовые, не содержащие координированных анионов, ускоряется под влиянием ряда факторов и особенно сильно в присутствии ионов Сг " вследствие обмена электронами между Сг " и Сг " . Кроме того, анион N0 нитрата хрома и катион Н аммиака оказывают меньшее пространственное препятствие при агрегации частиц и при упорядочении кристаллической структуры Сг (ОН)з. Таким образом, структура и свойства осадков гидроокиси хрома зависят от природы исходных солей этого металла. [c.30]

    Этот полимер дает картину трехмерной рентгеновской дифракции лишь в присутствии муравьиной кислоты. Удаление ее приводит к аморфизации, причем этот процесс полностью обратим, и циклы кристаллизация — аморфизация можно повторять многократно. Прямым доказательством того, что на самом деле образуются кристаллосольваты (или стереокомплексы с растворителем), служит тот факт, что при использовании разных растворителей — муравьиной кислоты, ледяной уксусной кислоты или л-крезола — получаются различные кристаллические решетки. Образующиеся кристаллы существуют в некоторой области концентраций. При значительных концентрациях растворителя система снова становится изотропной. [c.24]

    Известным аналогом периодических коллоидных структур мо-, жет служить кристалл монтимориллонитовой глины при его внутрикристаллическом набухании в водных растворах. При внутрикристаллическом набухании кристаллические плоскости толщиной каждая около 10 А раздвигаются и между ними образуются жидкие прослойки. Условием набухания является насыщение кристалла ионами Н+, или Na При очень низких концентрациях внутрикристаллические прослойки достигают толщины в 300 А. Одинаковость всех прослоек сохраняет периодическую структуру системы и позволяет по дифракции рентгеновских лучей измерять толщины прослоек. Полученные данные согласуются с теорией ДЛФО. Такой набухший кристалл служит хорошей моделью других периодических структур. С помощью этой модели можно также, как показал О. Г. Усьяров, обнаружить существование ближней и дальней потенциальной ям, энергетического барьера и влияние валентности ионов на закономерности набухания. [c.319]

    Изучены фазовые равновесия в системах La- o-Ni-0, Ьа-Мп-Н1-0, Ьа-Ме-Со-О, Ьа-Ме-К1-0, Ьа-Ме-Со-Ы1-0, где Ме - Са, 8г, Ва. Методами рентгеновской, нейтронной дифракции и ЕХАР8 спектроскопии изучены структуры индивидуальных сложнооксидных фаз. Впервые установлены типы ряда структур, вычислены координаты атомов, длины связей и степени заполнения различных кристаллографических позиций. Изучена кристаллическая структура полученных твердых растворов и выполнено моделирование их дефектной структуры, оценена кислородная нестехиомет-рия. Методом валентных связей во все оксидах оценена степень окисления никеля. Полученные сложнооксидные материалы могут служить при изготовлении электродов топливных элементов, газовых лазеров и катализаторов многотоннажного органического синтеза. [c.118]

    Явление дифракции рентгеновских лучей на кристаллических решетках открыл в 1912 г. Лауз. Затем, независимо друг от друга, русский ученый Вульф и английский физик Брегг вывели основной закон рентгенографии, использовав аналогию с законом зеркального отражения световых лучей. Отраженные от параллельных плоскостей кристаллической решетки лучи интерферируют в том случае, когда система находится в отражающем положении , т.е. лучи совпадают по фазе. Для этого разность хода падающего и отраженного лучей в соответствии с законом Вульфа - Брегга должна быть равна целому числу волн [c.145]

    Теория малоутловой дифракции исходит из представлений, близких к применяемым в теории рассеяния света растворами макромолекул (с. 82). Теория позволяет связать наблюдаемую под теми или иными углами интенсивность рассеяния, т. е. его индикатрису с расстояниями между рассеивающими частицами. Для определения формы макромолекулы приходится задаться некоторыми о ней предположениями — представить макромолекулу в виде шара, эллипсоида или вытянутого цилиндра. Для таких, а также для других простых тел вычисляется индикатриса рассеяния как функция геометрических параметров макромолекулы. Так, для шара определяется электронный радиус инерции (электронный, так как рентгеновские лучи рассеиваются электронами). Для миоглобина этот радиус оказался равным 1,6 нм, что хорошо согласуется с размерами, определенными методом рентгеноструктурного анализа кристаллического миоглобина. Если рассеивающая система вытянута, то определяется электронный радиус инерции ее поперечного сечения. По индикатрисам рассеяния определены размеры, форма и молекулярные массы ряда биополимеров. Так, лизоцим представляется эквивалентным эллипсоидом вращения с размерами 2,8 X 2,8 X 5,0 нм . Более детальная информация о форме однородных частиц получается из анализа кривых рассеяния под большими углами (от [c.136]

    В твердом состоянии водородные связи между целлюлозными молекулами не имеют беспорядочного расположения. Здесь образуется регулярная система Н-связей и упорядоченная структура с кристаллоподобными свойствами. Эти свойства впервые обнаружили в 1913 г. Нишикава и Оно с помощью дифракции рентгеновских лучей. Результаты дальнейших исследований привели к нескольким моделям кристаллических ячеек целлюлозы, из которых окончательный вариант модели, выведенный Мейером и Мишем [c.68]

    Когда изучаются структурные особенности кристаллического полимера, помимо геометрии элементарной ячейки, необходимо принимать во внимание поликристаллический характер структуры. Поликристалличность сейчас же становится очевидной при анализе рентгенограмм. На полимерных системах можно получить несколько характерных типов дифракции рентгеновских лучей под большими углами. Если полимер некристаллический, дискретные брэгговские рефлексы отсутствуют. Наблюдается только диффузное гало, как показано на рис. 4 (натуральный каучук при 25° С). [c.25]

    Сжимаемость. Коэффициент сжимаемости определяется как относительное уменьшение объема на единицу давления при постоянной температуре. Для органических кристаллов коэффициент сжимаемости, как и коэффициент теплового расширения, значительно больше, чем для типичных неорганических веществ (исключая щелочные металлы), что опять-таки связано со сравнительно плохо упакованными структурами кристаллов органических веществ. Значения коэффициентов для металлов, тугоплавких окислов и неорганических солей обычно от 0,3-10 до 6-10 см -кг- -. Для щелочных металлов характерны значения от 1 10 до 6-10 см - кг" -, а для органических кристаллов — от 2-10 до 5-10 см -кг -. Сжимаемость бензола и гексана вблизи точки плавления исследовалась Стэйвели и Парамом [6881. Исследование кристаллических нормальных парафинов проведено Мюллером [450], который измерял методом дифракции рентгеновских лучей деформации решетки вдоль цепей и различных кристаллографических осей кристаллов под давлением до 1500 атм. Он показал, что сжимаемость вдоль оси цепочек молекул примерно в десять раз меньше, чем в перпендикуляр-Бом направлении. Пожалуй, наиболее обширное исследование сжимаемости органических кристаллов провел Бриджмен [87], который определил сжимаемость большого ряда органических кристаллов до высоких давлений порядка 4-10 кг-сж 2. Среди исследованных Бриджменом соединений были вормальные и циклические парафины, ароматические конденсированные циклические системы, органические производные, содержащие галогены, кислород, азот, серу и фосфор. Обобщение исследований Бриджмена до 1948 г. и другие данные по сжимаемости твердых веществ можно найти в его монографии [88]. [c.54]

    В некоторых отношениях эти ограничения прямо противоположны ограничениям, которые были обсуждены выше для методов дифракции нейтронов. Проникающая способность электронов невелика. Пучок электронов с энергией 50 кв проникает только через сотню1 атомных плоскостей, после чего он исчезает вследствие неупругого рассеяния. Это значит, что данный метод очень сильно ограничен и применим лишь для изучения поверхностных слоев кристалла или исключительно малых кристаллических тел. Все же упругое рассеяние, которое вызывает явление дифракции электронов, значительно больше (пр Имерно в 10 раз), чем соответствующее рассеяние рентгеновских лучей, т. е. отражается большая доля энергии падающих лучей. Только очень малые кристаллы можно исследовать данным способом. Поэтому обычно получаемая рентгенограмма состоит из системы точек и известна под названием диаграммы перекрестных решеток, так как подобна теоретической дифракционной диаграмме для двухмерной решетки. Эти диаграммы обычно являются симметрически правильной проекцией сечения обратной решетки. Их внешний вид может быть представлен как вид обратной решетки Эвальда, полученной при дифракции от малых йристаллов, когда происходит эффективный разброс точек. Это явление в сочетании с применением волны малой длины, как правило, позволяет получить множество рефлексий, что соответствует почти плоскостному сечению обратной решетки. [c.57]

    Если образец представляет собой монокристалл, то в результате дифракции рентгеновских лучей на кристаллической решетке на помещенной за образцом фотопленке (так, чтобы плоскость ее была перпендикулярна направлению падающего луча) появляется система пятен — точечных рефлексов, соответствующих отражениям от разных систем плоскостей (точечная рентгенограмма). При использовании монохроматического рентгеновского излучения (X = onst) для получения отражения от всех плоскостей монокристалла, образец вращают внутри полостй, образованной фотопленкой, свернутой в цилиндр. Если образец состоит из беспорядочно ориентированных кристалликов, то на плоской пленке, расположенной за образцом, получается система кольцевых рефлексов, порошковая рентгенограмма, или рентгенограмма Дебая — Шерера. При рассеянии рентгеновских лучей аморфным веществом, т. е. в отсутствие дальнего порядка, возникают широкие диффузные кольца (аморфные гало). Положение рефлексов дает возможность, используя уравнение (26), рассчитать межплоскостные расстояния для главных систем плоскостей в кристалле. Кроме того, существует специальная система приемов, позволяющая определить тип кристаллографической решетки и параметры элементарной ячейки. Однако часто рентгенограммы содержат недостаточную для этого информацию, и тогда при их расшифровке решают обратную задачу — выясняют, удовлетворяет ли дифракционная картина некоторой заданной структуре решетки. Интенсивность рефлексов различного порядка позволяет судить о расположении атомов и групп атомов в узлах кристаллографической решетки. Ширина каждого рефлекса А9 определяется степенью отклонения условий рассеяния от идеальных. Эти отклонения могут быть связаны со схемой прибора, некогерентностью излучения и т. д. Их можно учесть с помощью системы специальных попра-вок Более существенным, особенно для полимерных кристаллов, является уширение рефлекса вследствие ограниченных размеров отдельных кристаллов D и иска жений кристаллографической решетки, вносимых ра ного рода дефектами. При использовании рентгеновск лучей, для которых 0,5 — 2,5 А заметное увеличение [c.59]

    Кольца, содержащие от восьми до одиннадцати членов, так называемые средние циклы, с точки зрения конформационного анализа являются более сложными системами [5]. Отрицательные деформации углов связей могут быть уменьшены в определенной степени вращением вокруг углерод-углеродных связей кольца, однако при этом возникают значительные несвязанные взаимодействия. К обычным взаимодействиям питцеровского типа здесь добавляются значительные трансаннулярные взаимодействия между противоположными сторонами цикла. Эти взаимодействия приводят, в частности, к повышенной реакционной способности при реакциях раскрытия этих циклических систем и, наоборот, к более трудному их образованию, а также увеличивают возможность трансаннулярных реакций. Поскольку пока еще нет достаточных данных, то, естественно, нельзя провести такой же детальный конформационный анализ соединений со средними циклами, как это сделано для производных циклогексана. Общий вид молекулы был определен для некоторых веществ этой серии в кристаллическом состоянии (с помощью трехмерного рентгенографического анализа). Для конформационного построения средних циклов, исследованных до сих пор, характерен скорее 5-образный вид молекулы, чем форма правильной короны . Группа из пяти углеродных атомов с двойным сын-клинальным расположением является повторяющимся элементом (ХХУП1а). Формула (ХХУПГб), изображающая конформацию циклодекана на основании данных дифракции рентгеновских лучей, указывает на присутствие именно этой структурной единицы  [c.96]

    Одиим из интереснейших событий в химии нашего времени является открытие соединений благородных газов. Методы получения соединений элементов нулевой группы периодической системы и результаты всестороннего изучения их свойств составляют содержание книги. Рассмотрены также вопросы их возможного практического применения. Большое внимание уделено изучению молекулярной и кристаллической структуры мето-да.м и дифракции нейтронов, электронов и рентгеновских лучей, исследованиям по спектрам электронного пара магнитного резонанса, ядерного магнитного резонанса, инфракрасным, комбинационного рассеяния и др. Значительная часть книги посвящена теоретическим исследованиям соединений благородных газов вопросам образования связей, применению метода ЛКАО-МО и т. д. [c.2]

    При понижении растворяющей способности среды, в которой растворяется полимер (например, путем изменения температуры), осаждение полимерного компонента может быть предотвращено за счет образования геля. Реологическое поведение таких гелей дает основание полагать, что полимерные цепи образуют в далеко отстоящих друг от друга точках ассоциаты, которые связывают их в непрерывную сетчатую структуру, занимающую весь объем системы [149]. Ассоциация, обусловленная такими квазипоперечными связями ,— процесс обратимый, и, следовательно, гель может быть многократно переведен в жидкое состояние и получен снова без каких-либо изменений природы макромолекул. О характере образования связей имеются довольно неточные представления, однако термически обратимое образование геля обычно наблюдается для более или менее кристаллических цепных молекул . Образованием геля иногда объясняют появление резко выраженной дифракции рентгеновских лучей, которая исчезает в точке плавления геля. Такие явления наблюдались для водных растворов желатины [150—152], агар-агара [153] и раствора полиакрилонитрила в диметилформамиде [154]. Авторы цитированных выше работ высказали предположение о том, что наличие поперечных связей обусловлено появлением микрокристаллитов. Образование геля при охлаждении растворов полимеров наблюдалось также Бисшопсом [155, 156] для растворов полиакрилонитрила в диметилформамиде, Уолтером [157] для растворов поливинилхлорида и Ван-Амеронгеном [158] для растворов гуттаперчи. Наиболее подробно было исследовано застудневание желатины вследствие огромного технологического значения этого процесса. На способность разбавленных растворов желатины образовывать гель модификация различных функциональных групп (гидроксильных, карбоксильных, аминных и гуанидинных групп) полипептидной цепи желатины заметным образом не влияет. Однако даже незначительная модификация пептидных связей препятствует желатинизации [c.73]

    Такие аналитические методы, как исследование кругового дихроизма и рентгеноструктурный анализ, могут быть использованы для определения конформации ренатурированных и растворимых рекомбинантных белков. Немногочисленные имеющиеся к настоящему времени данные обнадеживают. Например, спектры, полученные при исследовании кругового дихроизма ренатурировавшего прохимозина [53] и секретируемого клетками Е. oli гормона роста человека [42], существенно не отличаются от спектров природных белков. Был также получен в кристаллическом виде -глобин, продуцируемый клетками Е. соИ и включившийся в состав гемоглобина. Исследование дифракции рентгеновских лучей с разрешением 2,8 А выявило весьма небольшие различия между природным и мутантным рекомбинантным белками эти различия объясняют изменениями, возникающими при генноинженерных манипуляциях [23]. Хотя и существуют проблемы, связанные с очисткой эукариотических полипептидов, выделяемых из клеток Е. oli, такая система используется для получения ряда белков, используемых в медицине [1]. [c.134]


Смотреть страницы где упоминается термин Рентгеновская дифракция кристаллические системы: [c.392]    [c.144]    [c.30]    [c.167]    [c.167]    [c.12]    [c.12]    [c.399]    [c.73]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.394 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция

Кристаллические системы

Рентгеновская дифракция



© 2024 chem21.info Реклама на сайте