Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрафиолетовые спектрофотометрические методы,

    Спектрофотометрический метод определения белка основан на способности ароматических аминокислот (триптофан, тирозин и в меньшей степени фенилаланин) поглощать ультрафиолетовый свет с максимумом поглощения при 280 нм. [c.33]

    В спектрофотометрических методах применяют спектрофотометры — приборы, позволяющие проводить анализ как окрашенных, так и бесцветных соединений по избирательному поглощению монохроматического излучения в видимой, ультрафиолетовой и инфракрасной областях спектра. Природа полос поглощения в ультрафиолетовой и видимой областях спектра связана с различными электронными переходами в [c.33]


    В основе модификации спектрофотометрического метода определения суммарного содержания нуклеиновых кислот, разработанной А. С. Спириным, лежит экстракция их из биологического материала горячей хлорной кислотой с последующим определением поглощения экстрактов в ультрафиолетовой области спектра при 270 и 290 нм. Автор предложил также формулу для расчета содержания нуклеиновых кислот. [c.162]

    В спектрофотометрических методах применяют сложные приборы - спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений с помощью избирательного поглощения монохроматического света в видимой, ультрафиолетовой или ближней инфракрасной областях спектра. Поскольку спектр поглощения каждого вещества имеет вполне определенную форму, спектрофотометр может быть применен как для качественного, так и для количественного анализа. [c.184]

    Спектрофотометрический метод анализа основан на качественном и количественном изучении светопоглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 500 ООО до 760 нм), видимой (от 760 до 400 нм) и ультрафиолетовой (от 400 до 1 нм). Задача спектрофотометрического анализа — определение концентрации вещества измерением оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома измеряют оптическую плотность желтого раствора хромата, поглощающего свет в сине-фиолетовой части видимого спектра. [c.453]

    Метод Лоури приблизительно в 100 раз чувствительнее биуретового метода и в 10—20 раз спектрофотометрического метода измерения концентрации белка по поглощению света с длиной волны около 280 нм (ультрафиолетовая область). С помощью метода Лоури можно определить количество белка в растворе, если его содержание составляет 10—20 мкг в 1 мл, [c.20]

    Спектрофотометрические методы анализа основаны на взаимодействии вещества с излучением ультрафиолетовой (УФ) и видимой областей электромагнитного спектра, а именно на избирательном поглощении излучения в этих областях спектра. Избирательность поглощения обусловлена частичной перестройкой электронного состояния вещества под влиянием излучения, переходами системы от одного энергетического уровня к другому. Интенсивность поглощения при электронных переходах для любой длины волны определяется вероятностью перехода и размером молекулы. Для возбуждения электронных уровней необходимо излучение УФ-участка спектра. Если электронные уровни молекул расположены достаточно близко друг к другу, то для осуществления перехода между ними достаточно воздействия излучения видимого участка спектра. [c.21]


    Ультрафиолетовый спектрофотометрический метод. Определяют оптическую плотность этанольного экстракта дустов и смачивающихся порошков паратиона при 274 ммк. [c.368]

    Спектрофотометрический метод определения концентрации к-ХМБ основан на специфическом поглощении его в ультрафиолетовой области спектра (232 нм). Коэффициент молярного поглощения п-ХМБ равен 1,69-10 М-1-см-, м. м. —379 Да. [c.158]

    Колориметрические и спектрофотометрические методы определения в видимой и ультрафиолетовой областях [c.104]

    Спектрофотометрический метод основан на свойстве витамина А поглощать часть света в ультрафиолетовой части спектра на длине волны 325—328 т х находится максимум этого поглощения (рис. 14). Сопоставляя величину экстинкции для испытуемого раствора с величиной экстинкции стандартного раствора (или пользуясь для этого заранее составленной абсорбционной кривой), рассчитывают обычным путем содержание витамина А в испытуемом растворе. [c.48]

    В спектрофотометрическом методе анализа поглощение света измеряют при строго определенной длине волны, которая соответствует максимуму поглощения данного окрашенного соединения (монохроматическое излучение). Спектрофотометрический метод имеет более широкие возможности, так как при нем можно проводить измерения в невидимых областях излучения ультрафиолетовой (УФ, длина волны X от 180 до 350 нм) и ближней инфракрасной (ИК, длина волны X от 760 до 1100 нм). [c.227]

    Спектрофотометрический метод, основанный на измерении оптической плотности нейтральной части пробы, растворенной в этиловом спирте, в ультрафиолетовой части спектра. [c.34]

    В табл. 3 даны результаты определений содержания ксилолов и этилбензола двумя методами по поглощению в инфракрасной области и по поглощению в ультрафиолетовой области спектра (спектрофотометрический метод). , [c.43]

    Ниже описан спектрофотометрический метод определения спиртов, основанный на исследовании спектров поглощения алкил-нитритов, получающихся из анализируемых спиртов. Спектры нитритов обладают характерными полосами в ультрафиолетовой части эти полосы обусловлены электронными переходами, происходящими в структурной группе —О—N = 0 молекул алкил-нитритов. Структура полос зависит от того, какой атом углерода связан с этой группой первичный, вторичный или третичный. [c.64]

    Таким образом, предложенный спектрофотометрический метод определения растворителя, увлеченного ароматикой, в ультрафиолетовой области спектра при совместном присутствии бензола и толуола позволяет быстро и с большой точностью контролировать чистоту индивидуальных ароматических углеводородов. [c.60]

    Определение констант ионизации при помощи спектрофотометрического метода в ультрафиолетовой или видимой области спектра занимает больше времени, чем определение констант ионизации потенциометрическим методом. Однако спектрофото-метрия является идеальным методом при определениях рКа труднорастворимых веществ, для которых потенциометрический метод не применим, а также в случае очень низких или высоких значений рКа (менее 1,5 и более 11). [c.64]

    Для массовых анализов близких по составу материалов в условиях стационарной лаборатории более удобны фотоэлектрические методы. Кроме того, как отмечалось ранее, фотоэлектрические, а особенно спектрофотометрические методы успешно применяются для анализа сложных смесей, а также дают возможность расширить фотометрию на ультрафиолетовую и инфракрасную области. [c.193]

    Наиболее широко распространены флуориметрическпе методы, основанные на измерении флуоресценции. При поглощении ультрафиолетового или видимого излучения молекулы переходят в электронно-возбужденное состояние. Полученная энергия может полностью переходить в энергию теплового движения, а может с определенной вероятностью (квантовым выходом) испускаться в виде рассеянного электромагнитного излучения, как правило, с частотой, меньшей частоты возбуждающего излучения. Это рассеянное излучение называют флуоресценцией. Его интенсивность можно измерить с высокой чувствительностью в любом направлении, даже отличающемся от направления пучка возбуждающего излучения, лучше всего в перпендикулярном ему направлении. При использовании достаточно чувствительных фотоэлектронных умножителей это позволяет регистрировать концентрации флуорофоров, практически недоступные спектрофотометрическому методу. Для веществ с достаточно высоким квантовым выходом флуоресценции удается регистрировать концентрации флуорофора порядка 10" о М и ниже. [c.252]

    В щелочной среде четырехвалентный теллур сильно поглощает в ультрафиолетовой области спектра, на основании чего разработан спектрофотометрический метод его определения [39]. [c.368]

    Спектрофотометрню в ультрафиолетовой и видимой областях ие следует рассматривать как самостоятельный метод исследования комплексообразования. Обычно спектрофотометрический метод дополняет потенциометрический. В разд. 2.3 и 6.3 мы уже обсуждали преимущества спектрофотометрии по сравнению с потенциометрией при определении числа частиц в очень лoлi-ных системах. Более того, известны случаи, когда невозможно различить равновесные процессы на основании только потенциометрических результатов. При проведении потенциометрических исследований необходимо располагать соответствующими электродами, поэтому потенциометрический метод применим для изучения немногих реакций. Недавно вышел обзор [1], в котором обсуждается примепепие спектрофотометрии для определения констант устойчивости. Некоторые ограничения спектрофотометрического метода уже обсуждались в разд. 6.3 и 6.4. [c.132]


    Задачи концентрационного анализа решаются также и с помощью спектрофотометрического метода, но в отличие от колориметрического метода в нем используется всегда монохроматический поток лучистой энергии различных участков спектра (видимого, ультрафиолетового, инфракрасного). Это значительно расширяет возможности спектрофотометрического метода по сравнению с колориметрическим (стр. 18). [c.5]

    Общие сведения. Свойство пуриновых и пиримидиновых оснований интенсивно поглощать ультрафиолетовые лучи в зоне 260 ммк используется для определения НК спектрофотометрическим методом. Высокая чувствительность, специфичность, на- [c.32]

    Для растворения стали, содержащей в своем составе примесь молибдена, применяют смесь концентрированных хлористоводородной и азотной кислот, при этом образуются соединения молибдена (VI). Максимум поглощения молибдена (VI) расположен примерно в области X = 230 нм. Это дает возможность определять молибден в растворе спектрофотометрическим методом в ультрафиолетовой области спектра Концентрацию молибдена устанавливают по значению мoляpнofo коэф фициента поглощения раствора. [c.259]

    Возможность определения фурфурола в водных растворах спектрофотометрическим методом основана на интенсивном избирательном поглощении света в ультрафиолетовой области при характерной длине волны А,=278 ммк. Для определения фурфурола в дистилляте по этому методу пипеткой отмеряют 10 мл ранее отогнанного раствора фурфурола в мерную колбу на 500 мл и раствор разбавляют водой до метки. Раствор тщательно перемешивают и определяют оптическую плотность раствора при А,=278 ммк в сравнении с оптической плотностью воды при той же величине К. Содержание фурфурола находят по калибровочному графику. Для измерения оптической плотности применяют кювету с толщиной рабочего слоя 10 мм. Такая подготовка к анализу приемлема в том случае, если содержание пентоз в исследуемом материале находится в пределах 2—10%. При более высоком содержании пентоз уменьшают концентрацию фурфурола соответствующим разведением раствора. При этом, определив по калибровочной кривой содержание фурфурола, результат увеличивают во столько раз. во сколько раз была уменьшена концентрация фурфурола в растворе для анализа. Для построения калибровочной кривой приготовляют растворы фурфурола с концентрацией от 5 мг1л до 1 мг/л. Оптическую плотность растворов определяют аналогично вышеизложенному. По полученным данным строят график, откладывая на оси абсцисс концентрацию фурфурола, а на оси ординат оптическую плотность растворов. Содержание потенциального фурфурола вычисляют по формуле [c.61]

    Маклин, Дженкс и Акри [1207] использовали спектрофотометрические методы в ультрафиолетовой области спектра для сравнения степени чистоты образцов различных растворителей (в том числе циклогексана) с целью обнаружения в них примесей (как содержавшихся ранее, так и образовавшихся при хранении), а также для контроля эффективности методов очистки. [c.275]

    Спектрофотометрические методы определения содержания отдельных РЗЭ основаны на использовании спектров поглошения растворов солей РЗЭ — хлоридов, нитратов, перхлоратов. Из всех элементов Периодической системы Д. И. Менделеева только у солей РЗЭ (и солей актинидов) наблюдаются довольно узкие полосы погло-шений с острыми максимумами в инфракрасной, видимой и ультрафиолетовой областях спектра. Узкополосные спектры поглошения аква-ионов лантаноидов объясняются особенностями строения их оболочек, причем спектр поглошения каждого РЗЭ имеет характерный, только ему присущий вид (рис. 22), так как отражает электронные переходы на оболочке 4/. Исключение составляют ионы иттрия, лантана и лютеция, которые не обладают собственным поглошением в растворах их солей. Спектры поглошения РЗЭ используют для определения содержания отдельных РЗЭ с помощью спектрофотометров или фотоэлектроколориметров, снабженных ртутной лампой СВД-120А (ФЭК-56), дающей линейчатый спектр. [c.195]

    В спектрофотометрических методах применяют спектрофот метры — приборы, позволяющие проводить анализ как окраше ных, так и бесцветных соединений по избирательному поглощ нию монохроматического излучения в видимой, ультрафиолет вой и инфракрасной областях спектра. Природа полос поглощ ния в ультрафиолетовой и видимой областях спектра связана различными электронными переходами в поглощающих молек лах и ионах (электронные спектры) в инфракрасной области 01 связана с колебательными переходами и изменением колебател ных состояний ядер, входящих в молекулу поглощающего вещ ства (колебательные спектры). [c.164]

    Как при выделении, так и в ходе различных исследовательских процедур необходимо осуществлять детекцию выделяемых или исследуемых веществ. При ничтожно малом количестве материала используемые для детекции методы должны быть высокочувствительными. Поэтому в биохимии редко используются такие классические приемы аналитической химии, как гравиметрический или объемный анализ. Основными методами детекции являются спектрофотометрические методы, основанные на измерении поглощения видимого или ультрафиолетового света, радиохимические методы, основанные на измерении радиоактивности, и люминесцентйые методы, основанные на измерении флуоресценции, био- и хеми-люми несценции. [c.231]

    Метод основан на измерении оцтической плотности растворов экстрагируемых веществ в четырежлористом углероде в ультрафиолетовой области спектра (длина волны 315 ымк,) при использовании фотоэлектроколориметра ФЭК - 56, имеющего в комплекте ртутную газоразрядную лампу СВД-120А. Чувствительность метода - 0,1 нг/л. Пределы применения спектрофотометрического метода - 200 мг/л. [c.314]

    Тредлагаемый спектрофотометрический метод определения микроколичеств растворителя ЛТИ в бензоле и толуоле позволяет быстро и с большой точностью контролировать процесс экстракции. Метод заключается в измерении ультрафиолетового поглощения экстрактивного растворителя ЛТИ на длине волны 225 ммк. Кривые поглощения бензола и толуола на выбранном участке спектра (205— 240 ммк) и растворителя в ультрафиолетовой области спектра приведены на рис. 1. [c.57]

    В то время как потенциометрическое определение константы ионизации занимает всего лишь 20 мин, применение спектрофотометрического метода в ультрафиолетовой области спектра для той же цели требует большую часть рабочего дня. Тем не менее, этот метод оказывается удобным для определения кон- стант плохо растворимых веществ, а также для работы при очень малых или очень больших значениях pH, когда стеклян-ный электрод непригоден. Спектрофотометрический метод может быть использован лишь в тех случаях, когда вещество поглощает свет в ультрафиолетовой или видимой области и максимумы поглощения соответствующих ионных форм находятся на различных длинах волн. Спектрофотометрические определения всегда связаны с потенциометрическими, поскольку спектральные измерения проводятся в буферных растворах, значения pH которых определяются потенциометрически. Потенциометрическое определение констант ионизации путем измерения концентрации ионов водорода не связано непосредственно с определением неизвестных (исследуемых) веществ. При спектрофотометрическом же методе измеряются сдвиги спектральных линий, обязанные присоединению протона к неизвестному (исследуемому) веществу (глава 4). Рамановские спектры и ядерный магнитный резонанс позволяют определять константы ионизации даже таких сильных кислот, как азотная и трифторуксусная [c.17]

    В спектрофотометрических методах применяют более сложные приборы — спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений по избирательному поглощению монохроматического света в видимой, ультрафиолетовой или инфракрасной областях спектра. В отличие от фотоколориме-трических, эти методы, кроме концентрации светопоглощающих соединений, позволяют определять их состав, прочность и оптические характеристики. Наиболее совершенные спектрофотометрические методы анализа характеризуются высокой точностью (ошибка— 1—0,5 отн. %). Это прежде всего относится к дифференциальной спектрофотометрии и спектрофотометрическому титрованию, применяющимся для определения веществ в широком интервале концентраций, особенно при больших содержаниях. При соответствующих условиях эти методы не уступают по точности классическим методам анализа. [c.6]

    Описан также спектрофотометрический метод одновременного определения таллия, висмута и свинца, основанный на обнаруженной ранее способности хпорокомплексов этих элементов давать характерный максимум светопоглощения в ультрафиолетовой области спектра. В условиях определения таллий (I) показывает максимум светопоглощения при 245 ммк, висмут (III) при 327 ммк, а свинец (II) при 271 ммк. При наличии мешающих ионов таллий, висмут и свинец рекомендуется предварительно выделять в виде дитизонатов из раствора цианидов. Влияние олова (II), которое при этом не отделяется, можно свести к минимуму окислением его до четырехвалентного состояния. Для определения малых количеств таллия, порядка микрограммов, успешно применяется иодо-метрическое и броматометрическое титрование 0,001 н. растворами. Доп. перев.  [c.543]

    Инфракрасное поглощение перекиси водорода не настолько иитенсивно, чтобы его можно было использовать в качестве удовлетворительной основы метода анализа к тому же спектр перекиси весьма близок к спектру воды. Ультрафиолетовое поглощение перекиси водорода отличается интенсивностью, и хотя растворы перекиси не вполне строго подчиняются закону Бера, все же анализ, если эти растворы бесцветны и совершенно прозрачны, можно производить спектрофотометрическим методом даже при концентрации перекиси, не превышающей 8 лгг/л НоО. [103]. Жигер [104] описал прибор, применяемый для этой цели, и методику анализа. Ультрафиолетовая спектрофотометрия особенно подходит для анализа разбавленных растворов и паров. Однако этот метод может быть использован [103] и для определения концентрации жидкости вплоть до содержания по меньшей мере 50 вес. "о перекиси водорода, если измерять разность поглощения известной и неизвестной проб. [c.468]


Смотреть страницы где упоминается термин Ультрафиолетовые спектрофотометрические методы,: [c.190]    [c.59]    [c.252]    [c.158]    [c.267]    [c.639]    [c.659]    [c.2]    [c.175]   
Instrumental Methods of Organic Functional Group Analysis (1972) -- [ c.0 ]

Инструментальные методы анализа функциональных групп органических соединений (1972) -- [ c.0 ]

Инструментальные методы анализа функциональных групп органических соединений (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометрические



© 2025 chem21.info Реклама на сайте