Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фторидами кальция и тори циркония

    В качестве носителей чаще всего применяются такие соединения. Которые в дальнейшем не мешают определению или легко удаляются. Хорошими носителями для выделения следов урана являются гидроокиси многих металлов, обладающие рыхлым строением и большой поверхностью. Гидроокиси железа, алюминия, кальция, маг-йия, олова, тория, циркония и титана были рекомендованы для соосаждения с ними малых количеств урана [8, 19]. В качестве носителей для отделения следов урана могут применяться также перекись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения следовых количеств урана [126]. [c.283]


    Когда отделяемое количество урана не обеспечивает осаждения его из раствора с образованием самостоятельной твердой фазы в связи с недостаточной его концентрацией в растворе, или если выделение имеет место, но вследствие некоторой, хотя и незначительной растворимости выделяемого соединения значительная часть его остается в растворе или удерживается в виде коллоидных частиц, то в таких случаях образующееся соединение урана выделяют из раствора с другим труднорастворимым соединением, являющимся носителем В качестве носителей чаще всего применяются такие соединения Которые в дальнейшем не мешают определению или легко удаляются Хорошими носителями для выделения следов урана являются гид роокиси многих металлов, обладающие рыхлым строением и боль Шой поверхностью. Гидроокиси железа, алюминия, кальция, маг йия, олова, тория, циркония и титана были рекомендованы для со осаждения с ними малых количеств урана [8, 19]. В качестве носи Телей для отделения следов урана могут применяться также пере Кись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения сле-Довых количеств урана [126]. [c.283]

    Оксалаты и фториды р. з. э. и тория малорастворимы в разбавленных растворах щавелевой и плавиковой кислот. По данным Гиллебранда, при фторидном осаждении р. з. э. выделяются более полно, чем при оксалатном. Железо(И1), титан, цирконий, алюминий, уран(У1), ниобий и тантал остаются в растворе в присутствии избытка плавиковой кислоты. При осаждении оксалатов или фторидов р. з. э. из очень разбавленных растворов необходимо применение носителя. Подходящими носителями могут служить малорастворимые соли кальция или стронция. Ионные радиусы трехвалентных р. 3. э. (по Гольдшмидту) в ря у La — Ей меняются от 1,22 до 1,13 А, в ряду Gd — Lu от 1,11 до 0,99 А (ионный радиус иттрия равен 1,06 А). Ионные радиусы кальция и стронция соответственно равны 1,06 и 1,27 к. Известно, что фториды кальция и иттрия образуют смешанные кристаллы Можно ожидать, что фторид лантана лучше соосаждается с фторидом стронция, чем с фторидом кальция. Осадки фторидов довольно плохо фильтруются и промываются. Осадки оксалатов обрабатываются легче и поэтому для осаждения р. з. э. следует также применять и оксалатные соли, однако этот метод мало разработан .  [c.668]

    Предварительная обработка зависит от состава образца. Определению урана не мешают кальций, кадмий, кобальт, хром (III), медь, алюминий, железо (II), ванадий (IV), сульфаты, перхлораты, нитраты, ацетаты, цитраты и тартраты. Мешающее действие циркония, тория, гафния, железа (III), ванадия (V), хрома (VI), фосфатов, избытка фторидов устраняют по приведенным ниже методикам. [c.378]


    Метод применяется для выделения фтора нз фторидов алюми ния, висмута,. церия (III), тория, урана (IV) и (VI), ванадия, цинка, магния, циркония, натрия и кальция. [c.1098]

    Кроме бериллия, в условиях его определения флуоресцируют иттрий и скандий (в 200 раз слабее), торий, гафний и цирконий (в 2500—3000 раз слабее бериллия) [51]. Флуоресценцию бериллия ослабляют вещества, сильно поглощающие свет (в особенности — соли хрома) или окисляющие морин в щелочной среде (медь, золото, серебро). Мешают определению ионы, выпадающие в осадок значительные количества титана, урана, иногда очень высокие содержания (десятки процентов в пробе) алюминия и кальция — так как с ними легко соосаждается гидроокись бериллия поэтому выпадение любых осадков в щелочных растворах может привести к потере бериллия. Бораты, фосфаты и фториды помех не вызывают [36, 40, 51, 71]. [c.209]

    Пр определении фторидов по разрушению им лаков алшиния, тория и циркония с арсеназо I можно добиться сравнительно высокой селективности. Не мешают определению при оптимальных условиях проведения реакции хлориды кальция, магния, бария, алшиния, редкоземельные элементы и ванадий. [c.15]

    По данным Кузнецова [5 6], в соляно- или азотнокислых растворах (pH = 2—4) розовое окрашивание с тороном дают только торий и уран-1У, но уран-У1 не оказывает влияния, даже если его содержание в 1000 раз превышает содержание тория. Титан, цирконий и гафний дают оранжевое окрашивание. Ионы редкоземельных элементов образуют красное окрашивание только при pH = 5—6. Щелочные металлы, аммоний и кальций понижают интенсивность окраски комплекса тория с тороном. Препятствуют реакции анионы, образующие с торием комплексные или малорастворимые соединения, такие, например, как фториды, оксалаты, фосфаты, органические оксикис-лоты мешают окраской своих солей железо-3, кобальт, никель, медь. [c.71]

    Окраска развивается мгновенно и устойчива в водных растворах 15 дней (в неводных — 12 ч). В присутствии комплексона И не мешают определению стократные количества шестивалентных ионов вольфрама, молибдена и урана, четырехвалентных осмия, платины, тория и циркония, трехвалентных алюминия, золота, висмута, железа, лантана и родия, двухвалентных бария, кальция, кобальта, меди, железа, ртути, магния, марганца, никеля, свинца, стронция и цинка, одновалентных калия, лития и натрия, а также анионы — бромид, хлорид, ацетат, карбонат, оксалат, фторид, фосфат, иодид, нитрит, нитрат, сульфид, сульфит и сульфат. Сильно мешают цианид-ионы и ионы четырехвалентного иридия. Результаты, полученные авторами, говорят о том, что предлагаемая система весьма перспективна для фотометрического определения серебра. Недостатком системы является фотохимическая нестойкость реагента [29]. [c.50]

    Фторидное осаждение применяют обычно к растворам элементов, образующих окислы с общей формулой РгОз или ЯОа, т. е. к таким растворам, которые не содержат кальция или магния. Осадок растворяют в избытке плавиковой кислоты и раствор упаривают до небольшого объема, если нужно уменьшить кислотность, а затем разбавляют водой. Для уменьшения растворимости осадка фторидов можно добавить фторид аммония. Титан и цирконий образуют фторидные комплексы и остаются в растворе это же относится к железу, алюминию, ниобию, танталу, молибдену и вольфраму. Торию сопутствуют уран(IV), церий (IV), так же как и трехвалентные редкоземельные элементы. Не вызывает сомнения, что редкоземельные элементы и кальций можно использовать в качестве носителя при осаждении фторида тория. При осаждении из азотнокислых растворов фторид лантана обеспечивает хорошее извлечение. Применяемые количества лантана должны быть малы, иначе будут соосаждаться другие металлы, например такие, как цирконий. Осадок фторидов желатинообразен и, как правило, трудно фильтруется. Поэтому иногда лучше проводить не фильтрование, а центрифугирование. В некоторых методах в качестве носителя применяют хлорид рту-ти(1) (стр. 754) действие его чисто механическое. [c.753]

    Сплавление металлических компонентов почти всегда необходимо проводить в вакууме или инертной атмосфере аргона или гелия. В настоящее время часто применяются тугоплавкие тигли из окислов бериллия, циркония или тория в отдельных случаях пользуются и тиглями из окиси алюминия. Для предотвращения окисления требуется создание очень хорошего вакуума. ЕсЛи один из. металлов весьма летуч, то, для сведения к минимуму потерь из-за дестил-ляции можно применять атмосферу из хорошо очищенного аргона. Лучше всего пользоваться индукционным нагревом это особенно желательно при сплавлении металлов, сильно различающихся по удельному весу, так как при этом происходит их более полное перемешивание. В случае легкоплавких металлов, например свинца или висмута, применяются электролитические процессы. Так, тетрахлорид урана растворяли в расплавленной смеси хлоридов натрия и кальция (т. пл. 750°), затем смесь подвергали электролизу в ванне со стальным катодом, покрытым слоем жидкого свинца или висмута [2]. Для получения ртутных амальгам необходимо применять очень чистый металлический уран, приготовленный разложением гидрида. Некоторые сплавы были случайно получены при одновременном восстановлении тетрафторида урана и фторидов других металлов. Но этот метод не рекомендуется для систематического изучения, так как при нем затруднительно заранее определить конечный состав и структуру сплавов. [c.148]


    Для тушения его используют фторид кальция, для тушения непригодны азот, диоксид углерода и хладоны. Плутоний еще более чувствителен к возгоранию, чем уран. Уран, торий и плутонии весьма пирофорны в порошкообразном состоянии и легко возгораются от разрядов статического электричества. Компактный плутоний самовоспламеняется при 600 °С. Цирконий и магний значительно более активны и практически не горят только в атмосфере благородных газов, например аргона. Графит возгорается с большим трудом и только в накопленном состоянии, горит он гетерогенно, при высоких температурах реагирует с водяным паром. При температурах до 200—250 °С в графите под воздействием проникающей радиации искахоет-ся структура кристаллической решетки, и вследствие этого накапливается скрытая энергия (эффект Вигнера). Если эта энергия регулярно не рассеивается путем отжига (повышения температуры), то она может накапливаться до определенной точки и затем внезапно выделяться с резким повышением температуры, которая может привести к пожару. Горение графита ликвидируют обычно диоксидом углерода или аргоном. Можно применить и большие массы воды. Высокая пожарная опасность создается при применении в качестве теплоносителя натрия или калия. Хотя они горят медленно, но тушение их затруднено и требует специальных средств пожаротушения. [c.93]

    С) 10,1 10 град теплоемкость 6,34 кал/г-атом-град электрическое сопротивление Ъ1 мком см сечение захвата тепловых нейтронов 1,31 барн парамагнитен работа выхода электронов 3,07 эв. Модуль норм, упругости 6600 гс/жж модуль сдвига 2630 кгс .чм предел прочности 31,5 кгс мм предел текучести 17,5 кгс мм сжимаемость 26,8 X X 10— см кг удлинение 35% НУ= = 38. Чистый И. легко поддается мех. обработке и деформированию. Его куют п прокатывают до лент толщиной 0,05 мм па холоду с промежуточными отжигами в вакууме при т-ре 900—1000° С. И.— химически активный металл, реагирует со щелочами и к-тами, сильно окисляется при нагревании на воздухе. Работы с И. проводят в защитных камерах и высоком вакууме. И. с металлами 1а, На и Уа подгрупп, а также с хромом и ураном образует несмешиваю-щиеся двойные системы с титаном, цирконием, гафнием, молибденом и вольфрамом — двойные системы эвтектического типа (см. Эвтектика) с редкоземельными элементами, скандием и торием — непрерывные ряды твердых растворов и широкие области растворов с остальными элементами — сложные системы с наличием хим. соединений (см. Диаграмма состояния). Получают И. металлотермическим восстановлением, действуя на его фторид кальцием при т-ре выше т-ры плавления металла. Затем металл переплавляют в вакууме и дистиллируют, получая И. чистотой до 99,8-5-99,9%. Чистоту металла повышают двух- и трехкратной дис- [c.518]

    Белый нерастворимый нелетучий тетрафторид тория плавится при 111 ГС и образует двойные фториды со многими металлами. Он растворяется в расплавленных смесях фторидов щелочных металлов с фторидами бериллия или циркония, образуя растворы, которые могут быть использованы в зоне воспроизводства в реакторах, работающих на горючем на основе расплавленных солей (см. раздел 14.6). ТЬр4 может быть превращен в металл восстановлением кальцием или электролизом в расплавленном хлориде, использующемся в качестве электролита. Восстановление кальцием обычно применяется в США для получения металлического тория. Другие тетрагалогениды тория хорошо растворимы в воде и летучи в вакууме при высоких температурах. ТЬСЬ может быть восстановлен до металла щелочными или щелочноземельными металлами, если он абсолютно свободен от воды. Расплавленный ТЬЛ4 выше 700° С взаимодействует со стеклом и фарфором. Выше 1000° С он разлагается с образованием чистого металлического тория [5]. [c.93]

    Во фторидометрии используют способность ионов некоторых металлов образовывать прочные фторидные комплексы. Фторидометрически чаще всего определяют ионы алюминия, циркония, тория и кальция. При титровании раствором фторида натрия первых трех ионов протекают следующие реакции  [c.207]

    В случае необходимости плавиковую кислоту можно удалить упариванием с H2SO4 или H IO4. Однако применение этих кислот не желательно. В присутствии сульфат-иона в исследуемом растворе торий связывается в комплексный анион, в результате чего не достигается полнота осаждения тория иодатом, аммиаком и перекисью водорода кроме того, при анализе фосфатных пород и известняков, содержащих много кальция, образуются осадки сульфата кальция. Последние затрудняют последующее отделение тория от Zr и Ti плавиковой или щавелевой кислотой из-за образования нерастворимых двойных фторидов или двойных оксалатов циркония и кальция. Присутствие же в исследуемом растворе перхлоратов может привести к образованию стабильных эмульсий при экстракции органическими растворителями (например, этилацетатом) [578, стр. 11J. [c.162]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Новый спектрофотометрический метод определения фторида [44] основан на его взаимодействии с хлоранилатом тория при pH 4,5 в водном растворе, содержащем метилцеллозольв. Метилцеллозольв ускоряет взаимодействие фторида с хлоранилатом тория (образуется ТЬр2С С1204) и значительно повышает чувствительность метода. Чувствительность варьируется путем измерения оптической плотности при 540 или при 330 ммк или путем изменения концентрации метилцеллозольва в растворе. Метод был проверен на водах и катализаторах. Ионы серебра, кальция, бария, магния, натрия, калия и аммония не мешают определению. Кадмий, олово, стронций, железо, цирконий, кобальт, свинец, никель, цинк, медь и алюминий мешают, и их следует удалять. При помощи ионообменной смолы удается удалить все катионы, за исключением алюминия и циркония. Если они присутствуют, фторид выделяют дистилляцией. [c.280]

    Схватывание и твердение всех зубных цементов, несмотря на многообразие их химического состава, характеризуется образованием фосфатного геля.. Зубные силикатные цементы не обладают истинными, гидравлическими свойствами, как у портланд-цемента , но добавление растворов фосфорной кислоты, сразу же. стимулирует реакцию. Окись цинка в фосфатных цементах способствует процессу твердения в силикатных цементах эту роль выполняют глинозем, известь-и т. д. 2 Руфф, Фридрих и Ашер з изучили реакции этих видов зубного цемента, обусловливающие быстрое схватывание и твердение. Вместо раствора фосфорной кислоты эти авторы использовали сложные фториды, например силикофториды цинка, магния, алюминия, олова, циркония и т. д., в комбинации с окисью кальция,, двуокисью тория, двуокисью церия и пр. Многие из перечисленных вариантов цемента нельзя использовать на практике из-за их высокой способности к реакциям, чрезмерного изменения объема и других нежелательных свойств. Однако оказалось, что смесь окиси лантана с кремнеземом с молярным соотношением 1 2, смешанная с фосфорной кислотой или раствором фосфата цинка, может быть использована. Под микроскопом видно, что гель, образовавшийся в результате. реакции, в сущности представляет собой гидрат кремнезема, в котором кристаллизуются фториды или фосфаты. [c.831]

    В настоящее время резко возрос интерес химиков к определению малых количеств примесей в чистых веществах. Это связано с организацией и развитием атомной промышленности, которой необходимы сверхчистые уран, торий, бериллий, цирконий, ниобий и др. металлы. Еще более чистые вещества потребовались в электронике и электротехнике (германий и кремний, селен и селени-ды, арсенид галлия, антимонид сурьмы, фосфиды индия и галлия). Для изготовления лазеров нужны чистый рубидий и редкоземельные элементы. Новая техника нуждается также в высокочистых хлориде и бромиде кадмия, фторидах лития и кальция, иодиде калия, бромиде и иодиде индия, цезии высокой чистоты, гидриде цезия и др. Стали существенно более чистыми материалы, с которыми работают в промышленности химических реактивов, в черной и цветной металлургии при производстве жаропрочных и химически стойких сплавов и т. д. [c.9]

    В основе механизма почти всех объёмных и фотометрических методов определения фтора лежит способность фторид-ионов образовывать прочные комплексные соединения с некоторыми катионами (алюминий, цирконий, тории, кальций и др.К В объёмных методах это свойство реализуется следующим образом анализируемый раствор титруют раствором соли катиона, образующего с фторидами малодис-социированное соединение индикатором при этом служит оргшгичес-кий реактив, окрашенный комплекс которого с титрантом менэе стоек, чем фторидный комплекс катиона. [c.7]


Смотреть страницы где упоминается термин фторидами кальция и тори циркония: [c.158]    [c.295]    [c.293]   
Аналитическая химия урана (0) -- [ c.318 , c.329 , c.335 , c.337 ]

Аналитическая химия урана (1962) -- [ c.318 , c.329 , c.335 , c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Кальция фторид

Фторид тория



© 2025 chem21.info Реклама на сайте