Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость ядер атомов

    Гамма-распад. При переходе из возбужденного энергетического состояния в устойчивое ядро атом высвобождает один или несколько квантов энергии, выделяющейся в виде -излучения. Гамма-лучи занимают определенный интервал спектра электромагнитных колебаний, отличаясь от рентгеновских лучей меньшей длиной волн. Гамма-излучение имеет весьма ярко выраженные волновые свойства у-лучи подвержены дифракции, интерференции и т. п. Все же целый ряд свойств позволяет рассматривать -излучение как корпускулярное, дискретное. Ниже рассматриваются некоторые из этих свойств. [c.56]


    Атомные ядра включают N нейтронов и Z протонов. Параметры и свойства атомных ядер влияют на протекание химических процессов, так как масса, заряд, энергия связи, устойчивость и ядерный спин ядра в значительной мере определяют свойства атома в целом. Отметим прежде всего, что с помощью масс-спектроскопических методов можно обнаружить разность ме кду массой ядра и массой, найденной простым суммированием масс составляющих его нуклонов, — так называемый дефект массы Ат. Энергетический эквивалент дефекта массы представляет собой энергию связи нуклонов в ядре. Ат = = 1,0078 Z+1,0087 N —т. Для ядра гелия Ат = 0,03 а. е. м., что соответствует 27,9 МэВ. Энергия связи ядра химического элемента приблизительно линейно зависит от массового числа A=--Z- -N. Если построить график зависимости средней энергии связи па один нуклон от массового числа, наблюдается максимум при средних значениях массового числа. Таким образом, ядра со средним массовым числом более устойчивы, чем тяжелые или легкие. Следует отметить, что тяжелые ядра богаче нейтронами, чем легкие. При Z>84 уже не существует стабильных ядер. Различают следующие виды ядер изотопы (равные Z, неравные N), изотоны (неравные Z, равные N), изобары (неравные Z, неравные N, равные А), изомеры (равные Z и N, однако внутренняя энергия неодинакова). Для нечетных А имеется лишь одно стабильное ядро, а для четных — несколько стабильных ядер изобаров (правило изобар Маттауха). [c.34]

    Атомом называют мельчайшую частицу элемента, сохраняющую все его свойства, С точки зрения теории строения атомом является устойчивая динамическая система из положительно заряженного ядра и определенного числа электронов. Если число электронов равно числу единиц заряда ядра, атом яв.тяется электронейтральной системой, к которой и относится химическое определение атома, в противном же случае мы имеем дело с положительным или отрицательным ионом. В теории строения такие системы описывают теми же методами, что и электронейтральные атомы, поэтому второе определение обобщает понятие атома и на ионы. Говоря об устойчивости атома, понимают, что энергия атома ниже, чем энергия невзаимодействующих ядра и электронов, т. е. при образовании атома из ядра и электронов энергия выделяется. Обычно за начало отсчета энергии, т, е. за нуль, принимается энергия невзаимодействующих ядра и электронов. Тогда энергия устойчивой системы — атоМа — оказывается отрицательной. [c.16]


    Не всякое сочетание протонов с нейтронами устойчиво. Ядра атомов более легких элементов устойчивы, когда число нейтронов примерно равно числу протонов. По мере увеличения заряда ядра относительное число нейтронов, необходимых для устойчивости, растет, достигая в последних рядах периодической системы значительного перевеса над числом протонов. Так, у висмута (ат. масса 209) на 83 протона приходится уже 126 нейтронов ядра более тяжелых элементов вообще неустойчивы. [c.104]

    При энергичном действии сильных окислителей на гомологи бензола бензольное ядро оказывается более устойчивым, чем жирные радикалы (алкилы) боковых цепей. В результате такого окисления боковые цепи, какова бы ни была их длина, отщепляются от бензольного ядра только ближайший к ядру атом углерода не отщепляется, а образует карбоксильную группу. Эта реакция может быть использована для определения числа боковых цепей и их относительного положения в ядре при наличии одного замещающего радикала получается одноосновная бензойная кислота, при двух—соответствующие двухосновные кислоты (о-, м- и /г-фталевая) и т. д. [c.220]

    Пометить атом или молекулу можно и более вычурным способом. Многие ядра существуют в разных модификациях, именуемых изотопами. Они отличаются друг от друга числом нейтронов при том же числе протонов. Число протонов задает число электронов в электронной оболочке атома и тем самым большинство его химических (атомных) свойств. Переместиться нейтрону из ядра в ядро непросто, поэтому нейтроны устойчиво метят атом. Последнее позволяет с помощью изотопов следить за перемещением отдельных атомов и молекул. Так и говорят метод меченых атомов. Этот метод широко применяется в разных сферах — от материаловедения до медицины. [c.208]

    Гомологи бензола окисляются значительно легче бензола. Но и в них ароматическое ядро более устойчиво к действию окислителей, чем соединенные с ядром углеводородные радикалы. Как бы ни была сложна боковая цепь, она при действии сильных окислителей разрушается, за исключением атома углерода, ближайшего к ядру. Атом углерода, соединенный с ароматическим ядром, окисляется в карбоксильную группу. [c.134]

    Такая связь иначе называется гетерополярной. Она осуществляется в результате перехода одного или нескольких электронов с внешней электронной орбиты одного атома на внешнюю электронную орбиту другого атома. Переход электронов является причиной возникновения зарядов у атомов и превращения их в соответствующие ионы. Атом, потерявший электрон, становится положительно заряженным ионом, так как в нем получает преобладание положительный заряд ядра. Атом, присоединивший электрон, становится отрицательно заряженным ионом. Оба противоположно заряженные иона, взаимодействуя между собой по закону электростатического притяжения, образуют молекулу. Таким образом, при образовании ионной связи один из атомов отдает электроны, а другой их принимает. В этом состоит и физический смысл понятия валентности, введенного в науку чисто эмпирически. В результате перехода электронов атомы приобретают наиболее устойчивую структуру электронных оболочек— структуру электронных оболочек инертных газов. В настоящее время известно, что химическая инертность этих элементов вызывается тем, что их атомы в свободном состоянии обладают самой устойчивой структурой электронных оболочек по сравнению с любыми другими структурами, которые могли бы образоваться при взаимодействии атомов. [c.26]

    В результате ядерных реакций образуются новые атомы с устойчивыми или, гораздо чаще, с неустойчивыми ядрами, которые затем, испуская частицы, превращаются в устойчивые ядра. Искусственные элементы с неустойчивыми ядрами называются искусственными радиоактивными изотопами. Изотопы углерода п отличаются друг от друга числом нейтронов в ядре — атом имеет шесть, О — семь и — восемь нейтронов. Углерод является радиоактивным (радиоизотоп углерода), а и — стойкие, нерадиоактивные изотопы углерода. [c.141]

    Когда в искусственно полученном радиоактивном ядре содержится больше нейтронов, чем в ядре устойчивого изотопа, т. е. масса ядра больше атомного веса устойчивого изотопа, ядро может испускать Р-частицу с образованием устойчивого ядра. При потере Р-частицы атомный номер увеличивается на единицу, а число нейтронов уменьшается на единицу. Например, атомный вес обычного атома натрия равен 23. Такой атом содержит 12 нейтронов. Массовое число радиоактивного атома равно 24 (иЫа ), т. е. в нем 13 нейтронов. Этот атом не теряет нейтрон, а испускает Р-частицу, в результате чего образуется атом устойчивого изотопа магния  [c.142]


    Другое поразительное свойство радиоактивных элементов — это неустойчивость их ядер. Ядро радиоактивного элемента как будто не удовлетворено тем количеством протонов и нейтронов, которое оно содержит, и непрерывно выбрасывает а-и р-частицы до тех пор, пока не достигается устойчивая конфигурация. Атом радия, например, последовательно превращается в девять других элементов, теряя при этом пять а-частиц и четыре р-частицы, и достигает, наконец, устойчивой конфигурации изотопа свинца с атомным весом 206. Этот процесс естественного распада радия с образованием устойчивого изотопа свинца продолжается довольно длительное время. Поскольку радиоактивные элементы постоянно претерпевают естественный распад, можно представить себе, что в конечном счете все радиоактивные атомы данного элемента должны исчезнуть. Время, в течение которого этот процесс должен произойти, можно определить с достаточной степенью точности. Путем подсчета числа а-частиц, выделяющихся в одну секунду из образца, содержащего известное число атомов радия, было найдено, что половина атомов радия распадается приблизительно за 1590 лет. Промежуток времени, в течение которого распадается половина наличного количе- [c.44]

    Массовое число. А, и масса ядра, выраженные в атомных единицах массы, не совпадают, в частности, из-за того, что масса протона или нейтрона не равна в точности 1 а.е.м. В приложении 2 указано, что масса протона составляет 1,007276 а.е.м., а масса нейтрона 1,008665 а.е.м. Однако есть и другая причина атом устойчивого изотопа имеет меньшую массу, чем сумма масс всех электронов, протонов и нейтронов, из которых он состоит. [c.407]

    Атом — устойчивая динамическая система из положительно заряженного ядра и определенного числа электронов. У атома как устойчивой системы энергия ниже, чем суммарная энергия невзаимодействующих ядра и электронов, принимаемая обычно за начало отсчета. Энергия атома при таком отсчете оказывается отрицательной. [c.24]

    ПО которому можно построить потенциальную кривую основного состояния (рис. 21). Это кривая с минимумом, т. е. кривая устойчивого состояния (см. 13). При Яоо система распадается на атом водорода и протон, а энергия 65 стремится к —1/2 ат. ед., т. е. к энергии атома водорода. При О энергия неограниченно возрастает. Абсцисса минимума потенциальной кривой указывает равновесное расстояние Я = Гд = 2,157 ат. ед. (1,32 А). При Я = получаем строго определенную энергию электронного уровня основного состояния Ез. Разность энергии при бесконечно удаленных ядрах и в минимуме кривой определяет энергию химической связи  [c.68]

    Ранее уже упоминалось, что нет принципиального различия между природой межатомной химической связи и природой устойчивости самих атомов. Силы , которые удерживают систему— атом гелия (ядро и два электрона), те же, что и в молекуле водорода Нг (два ядра, два электрона) или в молекулярном ионе водорода Нг+ (два ядра, один электрон). Рассмотрим образование химической связи на примере Н2+-иона и молекулы Нг, так как на этих примерах удобнее всего познакомиться с методами квантовой механики. [c.75]

    Во-первых, теория Резерфорда не могла объяснить устойчивости атома. Электрон, вращаюш,ийся вокруг положительно заряженного ядра, должен, подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон должен переместиться ближе к ядру. Таким образом, электрон, непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю свою энергию, он должен упасть на ядро, и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования, и могут существовать, не разрушаясь, чрезвычайно долго. [c.40]

    В молекуле аммиака каждый из трех атомов водорода связан с атомом азота парой общих электронов (один электрон от атома водорода, другой — от атома азота). Таким образом, азот имеет восьмиэлектронную внешнюю оболочку, а ядро каждого атома водорода окружено двумя электронами, образующими устойчивую гелиевую оболочку. Такие же оболочки имеют атомы водорода в молекулах воды и метана. В молекуле диоксида углерода, где атом углерода связан с каждым из атомов кислорода двумя парами электронов (двойная связь), все три атома имеют восьмиэлектронные внешние оболочки. [c.104]

    Электрон, находящийся на первом слое, или на первой разрешенной орбите, обладает наименьшим запасом энергии. Атом водорода, у которого электрон вращается по первой орбите, будет находиться в самом устойчивом состоянии. Такое состояние иначе называют основным состоянием атома. Если атом будет поглощать энергию, то в соответствии с законом сохранения энергии энергия электрона в атоме повысится и он перескочит на более удаленную от ядра орбиту. В этом случае говорят, что атом перешел в возбужденное состояние. Время существования атома в возбужденном состоянии очень мало. Обратный переход атома в основное состояние, т. е. возврат электрона на первую орбиту, будет сопровождаться излучением энергии. Так как электрон в атоме может находиться только на строго определенных орбитах, т. е. характеризоваться строго определенными величинами энергии, то поглощение и излучение энергии атомом будет происходить в виде определенных порций, квантов, равных разности энергий электрона на тех орбитах, мел<ду которыми осуществляется его переход. [c.46]

    Необходимо обратить внимание на то, что вакантные орбитали на внешних оболочках благородных газов появляются начиная с аргона, но устойчивые соединения аргона пока не получены, соединения криптона весьма немногочисленны, в них криптон имеет в основном валентность два. Это объясняется тем, что внешние восьмиэлектронные оболочки благородных газов отличаются особой устойчивостью, на таких оболочках электроны связаны очень прочно и перевести атом в валентное состояние чрезвычайно трудно. У ксенона внешняя электрон-ная оболочка находится далеко от ядра и связь электронов на ней будет слабее, чем у расположенных выше атомов благородных газов, поэтому для ксенона получены соединения со всеми возможными валентностями. [c.77]

    Единственный электрон расположен очень близко от ядра (расстояние между ними всего 0,5 А) и прочно удерживается— потенциал ионизации водорода 13,6 эв. Поэтому и по химическим свойствам он не похож на легко отдающие свой внешний электрон щелочные металлы. Кроме того, атому водорода достаточно присоединить еще один электрон, чтобы получить устойчивую оболочку 15 , такую же как у гелия, что делает его похожим на типичные металлоиды. [c.43]

    Атом представляет собой сложную, но устойчивую систему, образованную элементарными частицами противоположного заряда. Атом в целом электронейтрален. Основная его масса сосредоточена в ядре. Ядро в свою очередь состоит из элементарных частиц протонов и нейтронов. Массы протона и нейтрона приблизительно равны протон заряжен положительно, нейтрон — нейтрален. Их обозначения + р — протон, — нейтрон (индекс слева от символа вверху обозначает массу, а внизу — заряд). [c.11]

    Радикал зарождения цепи [35, 193, 212] образуется прежде всего за счет разрыва связи С—С в алифатической цепи или отрыва от молекулы одного из наименее прочных атомов водорода. При разрыве двойной или нафтеновой связи вероятно обра- зование бирадикала (двухвалентного радикала). Некоторые радикалы способны к самораспаду. К сравнительно устойчивым относятся радикалы с двойной связью, с системой сопряженных связей и с ароматическим ядром, если атом углерода со свободной валентностью находится в альфа-положении от двойной связи или от фенильной группы [36, 37], как, например, стабильный аллильный радикал [c.40]

    Поле дра атома, удерживающее электроны, притягивает также и сво( ный электрон, если он окажется вблизи атома. Вместе с тем этот электрон испытывает и отталкивание со стороны электронов атома. Теоретический расчет и экспериментальные данные показывакп-, что для многих атомов энергия притяжения свободного электрона к ядру превышает энергию его отталкивания от электронных оболочек. Атомы могут присоединять электрон, образуя устойчивый отрицательный однозарядный ион. Энергия, выделяющаяся при добавлении электрона к нейтральному атому, который в результате переходит в однозарядный отрицательный ион, называется сродством атома к электрону. Эту величину можно трактовать как взятую с тем же знаком энергию отрыва электрона от отрицательного однозарядного иона. Подобно энергии ионизации сродство к электрону обычно выражают в электронвольтах. [c.34]

    Атом состоит из положительного ядра, содержащего протоны и нейтроны, и движущихся вокруг ядра электронов. Ь нотяе из атомов устойчивы, — они могут существовать сколь угодно долго. Известно, однако, и большое число радиоактивных атомов, которые спустя некоторое время превращаются в другие атомы в результате изменений, происходящих в ядре.  [c.5]

    Отсюда следует, что в молекуле L1F электронный заряд на связывающей орбитали будет сосредоточен в основном вокруг ядра фтора. Вместо того чтобы измерять ЭО в электрон-вольтах, можно принять 30(Li) за условную единицу и в ней выражать ЭО остальных элементов. Так можно получить условную шкалу электроотрицательностей. Она очень близка к шкале Полинга (табл. 11), построенной им на основе термохимических расчетов. С распространением метода МО в 60-годах появились работы, в которых уточняется шкала Малликена, вводятся электроотрицательности отдельных атомных орбиталей, образующих молекулярную орбиталь. Считают 5-орбиталь более электроотрицательной, чем / -орбиталь того же слоя, поскольку на i-орбитали электрон связан с ядром более прочно и МО с ее участием более устойчива. Очевидно, что, образуя связи в различных соединениях разными орбиталями, атом имеет в этих соединениях р 1зную электроотрицательность. Однако большинство химиков пользунэтся шкалой Полинга. [c.137]

    Более того, мы хотели бы также подчеркнуть определенную условность классификации различных типов связей. Так, в 3 мы уже отмечали, что электроппаи конфигурация атомов инертного газа наиболее предпочтительна для атомов или ионов составляющих молекул, но не единственна. Наглядной иллюстрацией такого утверждения является, в частности, образование (например, в условиях газового разряда) устойчивого молекулярного иона Hj" . Интересно то, что эта частица состоит из двух протонов и одного электрона. Каждый атом водорода в частице Н2+ имеет валентную 1 s-op-биталь (рис. 26). Между двумя ядрами показана область перекрывания этих орбиталей, н единственный электрон большую часть времени проводит в области перекрывания между гдрами Нд и Нв. [c.99]


Смотреть страницы где упоминается термин Устойчивость ядер атомов: [c.119]    [c.544]    [c.19]    [c.28]    [c.62]    [c.123]    [c.18]    [c.389]    [c.132]    [c.557]    [c.300]    [c.68]    [c.68]    [c.44]    [c.421]    [c.99]   
Смотреть главы в:

Теоретические основы общей химии -> Устойчивость ядер атомов




ПОИСК





Смотрите так же термины и статьи:

Атом устойчивое

Оболочечная модель ядра атома и устойчивость изотопов

Ядра атома тяжелое, устойчивость

Ядра атомов



© 2024 chem21.info Реклама на сайте