Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства ядер редкоземельных элементов

    В результате развития учения о строении атомов (в работах Мозли, Д. С. Рождественского, Зоммерфельда, Бора и др.) было доказано, что порядковый номер элемента в периодической системе равен заряду ядра атомов этого элемента была раскрыта причина периодичности свойств элементов, объяснено образование побочных групп периодической системы, особенности свойств редкоземельных элементов и др. [c.39]


    Химические свойства 4/-элементов (лантаноидов) в основном схожи со свойствами лантана, поэтому разделение лантаноидов (называемых также редкоземельными элементами) сильно затруднено. Поскольку 4/-электроны слабо экранируют заряд атомного ядра, размеры ионов лантаноидов +3 уменьшаются от Ьа к Ьи они мало отличаются от размеров иона У +, принадлежащего предыдущему периоду. Этот эффект получил название лантаноидного сжатия. Он проявляется и у соответствующих пар элементов других побочных подгрупп — циркония 7г и гафния Н в IV группе, ниобия КЬ и тантала Та в V, молибдена Мо и вольфрама в VI группе. [c.153]

    Замена атомной массы зарядом ядра была первым шагом в раскрытии физического смысла периодического закона. Далее, было важно установить причины возникновения периодичности, характер периодической функции зависимости свойств от заряда ядра, объяснить величины периодов, число редкоземельных элементов и пр. [c.455]

    Физические свойства. Внутренние переходные элементы, как все обычные переходные элементы, являются парамагнитными и образуют окрашенные ионы. Спектр поглощения окрашенных редкоземельных ионов состоит не из широких, а из узких полос. Это объясняется тем, что электронные переходы, вызывающие окраску редкоземельных ионов, происходят глубоко внутри атома и линии поглощения не расширяются под воздействием электронных полей соседних ионов. Далее, постепенное заполнение внутренней электронной оболочки ведет к подчинению электронов заряду ядра, равномерно увеличивающемуся с увеличением атомного номера. Это приводит к постепенному уменьшению атомных объемов (или ионного радиуса) элементов ( лантанидное сжатие ). [c.34]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5( 0-оболочку неустойчивой. Для элементов, следующих за Сс1, вновь наблюдается Монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бб -электронов, а один из семи неспаренных электронов на 4/оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ей и УЬ, 4/- и 4/З-оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бя -электронов при квазистабильных 4/- и 4/3-оболочках. Для элементов начала внутренних периодов — Ьа и Сс1 — наблюдается только степень окисления +3 вследствие устойчивости 4/>- и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5<Лб 2-электроны, т.е. по три электрона. Следует отметить, что заполненные бв-орбитали также должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]


    Н. X. Д. Бор заложил основы первой физической теории периодической системы элементов, в которой связал периодичность свойств элемептов с формированием электронных конфигураций атомов по мере увеличения заряда ядра. Применил два квантовых числа—п и к. Обосновал подразделение групп периодической системы на главные и побочные. Впервые объяснил подобие свойств редкоземельных элементов. [c.669]

    По своим химическим свойствам редкоземельные элементы, как правило, почти не отличаются друг от друга. Это связано с тем, что в состоянии 4/ электрон находится в среднем значительно ближе к ядру, чем, например, в 5/ - или б5-состоянии. Химические же свойства определяются в основном периферийными электронами, в данном случае 5- и / -электронами ранее заполненных оболочек. [c.54]

    Получался любопытный исторический парадокс два самых древних редкоземельных элемента — иттрий и церий — в начале третьего десятилетия XX века являли собой примеры непонятных аномалий на фоне целого ряда редких земель первый — потому, что но многим свойствам гармонично входил в семейство, располагаясь среди тяжелых его членов, хотя заряд его ядра был меньше заряда лантана на 18 единиц второй — потому, что с легкостью проявлял валентность, равную 4+. Эти факты требовали от теории Бора объяснения. От нее следовало ожидать большего, нежели определения границ и обоснования возникновения редкоземельной группы. Речь шла [c.92]

    Два рода свойств отмечает Клемм, давая характеристику редкоземельным элементам в целом. Во-нервых, это свойства апериодические, которые с увеличением заряда ядра изменяются непрерывно (ход величин молекулярных объемов ряда соединений, основностей, ионных радиусов, растворимостей солей и т. д.) они связаны главным образом с внешними валентными электронами — 6 и 5(1. Число их от лантана до лютеция остается неизменным. Вряд ли такие свойства могли быть использованы для построения периодической систематики. Во-вторых, это свойства периодические, которые прямо обусловлены 4/-электронами прежде всего аномальные валентности, парамагнетизм ионов и их окраска. Эти свойства Клемм и положил в основу своей системы. [c.100]

    Кроме упомянутых областей промышленного использования редких земель, ими широко пользуются в исследовательской работе. Вследствие уникальной атомной структуры этой группы элементов, многие их физические и химические свойства изменяются в зависимости от их кристаллической структуры и атомного строения. Почти все физические и химические свойства этих элементов определяются самыми удаленными от центра электронами. Именно эти удаленные от ядра электроны вызывают химические связи и перемещаются, когда происходят химические процессы. Редкоземельные элементы и элементы, подобные им, обычно имеют 3 электрона на внешней орбите, поэтому их валентность равна трем. Электронные структуры этих элементов в том виде, в каком они существуют в твердых солях, показаны в табл. 1. Начиная с церия, неполная внутренняя оболочка заполняется электронами. Эта внутренняя оболочка предохраняется заполненными оболочками 5х и 5р, которые расположены еще дальше от центра атома, и, следовательно, эти внутренние электроны играют ничтожную роль для сил сродства, удерживающих атомы в молекулах. Внутренние электроны обычно являются непарными и придают редкоземельным металлам и солям парамагнитные свойства. Даже будучи в твердом состоянии, внутренние электроны так хорошо защищены от внешних связующих электронов, что при первых грубых расчетах обусловливаемые ими энергетические состояния могут быть истолкованы теоретически точно таким же образом, как если бы [c.373]

    Исключением из изложенных выше результатов являются соединения редкоземельных элементов. Некоторые из электронов в редкоземельных ионах (/ -электроны) расположены так глубоко внутри остова иона, что они редко налетают на окружающие данный ион ядра с силой, достаточной для того, чтобы изменились их угловые моменты. Поэтому такие электроны ведут себя почти полностью так же, как если бы они находились в изолированных атомах. В атомах переходных элементов -электроны также находятся в некоторой степени внутри остова иона, но не так глубоко, как /-электроны. Поэтому окружающие атомы влияют на -электроны не очень сильно и последние не ведут себя, как электроны в изолированных атомах в такой мере, как /-электроны. Эти особенности сильно сказываются на магнитных свойствах, которые будут рассмотрены нами подробно в гл. 9. [c.196]

    Редкоземельные элементы появляются в качестве непосредственных или последующих продуктов деления урана или тория при бомбардировке их нейтронами, и так как ядра некоторых из этих элементов обладают интересными свойствами, то целесообразно рассмотреть и их свойства. Следует иметь в виду, что изучение ядер не проведено достаточно полно, так как выделение отдельных редкоземельных элементов сопряжено с известными уже читателю трудностями и исследованные материалы не всегда обладали достаточной чистотой. [c.102]


    Физическая причина различия в магнитных свойствах редкоземельных элементов и элементов переходных металлов связана с взаимодействием ионов с их окружением. Эти взаимодействия в первом приближении можно рассматривать как результат влияния кристаллического поля, т.е. электростатического поля, создаваемого зарядами ионов, окружающими данный ион. В случае редкоземельных элементов их частично заполненные 4/-оболочки находятся глубоко внутри иона (внешними для этих оболочек являются 5в- и 5р-электроны), и влияние электрического поля, создаваемого другими ионами кристалла, оказывается малосущественным. В случае же ионов переходных металлов их частично заполненные Зб -оболочки находятся достаточно далеко от ядра, и влияние на них кристаллического окружения становится заметным, что приводит к частичному нарушению правил Хунда. [c.278]

    Из общего количества интерметаллических соединений редкоземельных элементов, которые могут быть синтезированы, к настоящему времени с помощью эффекта Мессбауэра исследована лишь малая часть. Эти исследования дали цeннyюJинфopмaцию о магнитных свойствах этих соединений и плотностях волновых функций электронов на ядрах редкоземельных элементов. Оценки 2в(0) в различных соединениях, полученные с помощью измерений изомерного сдвига, вносят вклад в понимание природы интерметаллической связи. Эти оценки будут рассмотрены в разд. 111,3. [c.368]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    Наряду с описанным выше механизмом взаимодействия между электронным и ядерным спинами спектры ЯМР позволяют изучать второй тип взаимного влияния, называемый псевдокон-тактным взаимодействием, которое приводит к сдвигу линий спектра. Этот механизм эффективен в тех случаях, когда парамагнитный центр анизотропен. Такими анизотропными свойствами обладают, например, неспаренные электроны на валентных орбиталях атомов редкоземельных элементов. В протонном резонансе это свойство проявляется в дипольном взаимодействии магнитных моментов через пространство. Величина этого взаимодействия пропорциональна выражению (Зсоз 6 — 1) /г , где г — расстояние между рассматриваемым ядром и центром парамагнетизма, а 0 — угол между эффективной осью симметрии парамагнитного момента и ра- " х диус-вектором для данного ядра. [c.355]

    Водород существует в двух формах орто-, в которой ядра имеют параллельные спнны, и пара-, где спины антипараллельны. При температуре, близкой к абсолютному нулю, молекулы нахо-, дитси главным образом в геара-форме, в состоянии наиболее низкого энергетическогро уровня. При комнатной температуре около 75% водорода существует в орто-форме. (Две формы отличаются друг от друга различными физическими свойствами.) Так как ядерный спин исчезает в пара-форме водорода, эта форма не проявляет магнитных свойств газа. Парамагнитные соединении (например, Ог, редкоземельные элементы и радикалы) способствуют конверсии. Механизм конверсии, катализируемой атомами водорода, можно представить в виде [c.142]

    Итак, исследования Мозели подтвердили, что ряд редкоземельных элементов составлен химиками правильно и не может содержать никаких иных элементов, кроме уже открытых, за исключением элемента 61 и, может быть, 72. Все они оказались химически индивидуальными, каждый с определенным зарядом ядра, т. е. со своим порядковым номером в периодической системе. Но тем не менее оставалась непонятной причина близости их свойств. Работы Мозели не вносили ясности и в вопрос о положении редкоземельных элементов в таблице Менделеева. С одной стороны, в их ряду при переходе от элемента к элементу заряд ядра изменялся на 1, но свойства почти не менялись, с другой стороны, в любом другом местз таблицы нри изменении заряд на 1 свойства элементов менялись заметно (за исключением, пожалуй, группы железа и платиновых металлов, где такое изменение выглядело не столь резким). Мозели высказывал предположение, что химические свойства управляются зарядом ядра, или атомным номером элемента . Это предположение на протяжении периодчческой системы подтверждалось, но только свойства редкоземельных элементов мало зависели от изменения зарядов ядер. Следовательно, причину этого нужно было искать в какой-то иной закономерности. [c.80]

    Гидроокиси редкоземельных элементов — это наиболее сильные основания из всех гидроокисей трехвалентных элементов, исключая, быть может, актиний. По своей основности они располагаются между такими сильными основаниями, как Mg(0H)2 и А1(0Н)з. Амфотерность для них ни в коей мере не характерна. Здесь опять уместно сопоставить свойства лантаноидов и -элементов. У последних ионные радиусы с ростом заряда ядра уменьшаются довольно значительно, и это сказывается на увеличении амфотерности их гидроокисей. Большинство трехзарядных ионов -элементов входит в состав анионов. Между тем, трехвалентные ионы лантаноидов в обычных соединениях являются исключительно катионами. Это объясняется тем, что на всем протяжении от лантана до лютеция у них сохраняется относительно большой ионный радиус. Лишь у гидроокиси четырехвалентного церия в очень слабой степени проявляются и кислотные свойства. Например, некоторые соли цериевой кислоты (цераты), в частности Na2 eOз, получены даже в твердом состоянии. В целом основность гидроокисей редкоземельных элементов убывает от лантана к лютецию. В воде гидроокиси [c.133]

    Из нейтронодефицитных изотопов прометия наибольший интерес представляет изотоп Рт , свойства которого определяются наличием у ядер легких РЗЭ замкнутой оболочки из 82 нейтронов. Еще в 1948 г. Баллу [228] на основании вычисленной по теории Бора — Уилера относительной устойчивости ядер прометия высказал предположение о том, что изотоп Рт должен быть а -активным изотопом с большим временем жизни (Та). К этому же выводу пришла позднее Новосельская [121], которая вычислила, что Га для Рт должно быть равнымШ —Ю чет. Однако основание для поисков а -излучения Рт было получено только в самое последнее время, когда у РЗЭ было обнаружено около 15 а -активных изотопов, как естественных с Ti/, = 1,5-10 лет и с Г./, = 1,4-10 лет), так и полученных при ядерных реакциях с частицами высокой энергии. Из систематики а-распада тяжелых ядер [140]следует, что величины энергии а-частиц (Еа) у изотопов одного элемента растут с уменьшением числа нейтронов и что у ядер вблизи замкнутой оболочки из 126 нейтронов, а именно у ядер с числом нейтронов (N) 128, энергия а-распада достигает максимума. Такого же повышения а следует ожидать среди изотопов редкоземельных элементов с замкнутой оболочкой из 82 нейтронов. По аналогии с тяжелыми ядрами максимумы величин Е , а следовательно и большие скорости распада в этой области следует ожидать у ядер с 84 нейтронами [178, 553]. [c.114]

    Как указывалось выше, большинство редких земель имеет трехвалентную форму, поэтому их химические свойства отличаются незначительно. Как следует из табл. 1, сообщенный ядру дополнительный заряд повышает атомный номер элемента. В то время как этот дополнительный заряд уравновешивается электроном, добавленным к незаполненной оболочке 4/ при увеличении заряда ядра, последний стремится подтянуть э тектро-ны ближе к себе. В результате радиусы трехвалентных ионов редкоземельных элементов несколько уменьшаются с увеличением атомного номера так, радиус иона трехвалентного лютеция приблизительно на 10—15% меньше, чем трехвалентного лантана (конечно, это не применимо к радиусам гидратированных ионов, которые в действительности возрастают пропорционально увеличению атомного номера). [c.376]

    Последние пятнадцать лет ознаменовали собой революцию в науке. Открытие Ганом и Штрассманом [11 в 1939 г. деления ядра привело к успешному использованию ядерной энергии. Развитие ядерных реакторов и других ядерных устройств находилось преимущественно в руках физиков, однако дальнейшее, изучение ядерного деления означало широкое привлечение к работам спе-циалистов-химиков. Ко времени написания этих строк успешно синтезированы десять новых трансурановых элементов и некоторые из них получены в промышленных масштабах. Получение и выделение этих новых элементов, а также изучение свойств их соединений дали для неорганической химии много новых данных. Среди этих новых членов периодической системы имеются элементы с различными химическими свойствами, что наглядно проявляется при образовании необычных соединений и в некоторых случаях значительно усложняет химию этих элементов в растворах. Из-за радиоактивных свойств, присупщх новым элементам, разработаны новые экспериментальные приемы, ставшие необходимыми для гарантии безопасности при изучении этих элементов. Большое значение для химиков приобретают проблемы, возникающие при попытке интерпретировать взаимосвязь новых элементов между-собой и отношение к элементам периодической системы. Во многих случаях необходимо было вновь исследовать и переоценить некоторые давно известные разделы периодической системы в результате этого выполнен большой объем новых исследований, например по изучению редкоземельных элементов и таких давно известных элементов, как торий и уран. Задача данного труда—представить в сжатой форме экспериментальные и теоретические положения химии самых тяжелых элементов, подчеркнув пробелы наших современных знаний в этой области, а также обеспечить основу для будущего развития неорганической химии, которое должно неизбежно проистекать из факта появления значительного количества новых элементов в периодической системе. [c.6]

    Наиболее полно исследованы соединения ферромагнетика Mg u2 со структурой фазы Лавеса, где редкоземельный ион занимает положение Mg, а переходный металл — положение Си. В первой работе [77] для семи соединений КРег, где К — редкоземельный элемент, было обнаружено, что на ядре железа при низкой температуре равно 230 кэ. Поразительна нечувствительность Нп к магнитным свойствам К. Это требует неизменности атомной кон- [c.162]

    Большая часть редкоземельных элементов принадлежит к группе ядер, для которых характерны большие деформации (соответствующие несферической форме ядра в равновесном состоянии). Свойства таких ядер успешно описываются разработанной Бором и Моттельсоном [1] коллективной моделью ядра. Фактически переход от приблизительно сферических к существенно деформированным ядрам происходит в районе массового числа 150. Только ядра изотопов лантана, празеодима, а также некоторых изотопов неодима и самария можно считать сферическими. Особенно просты свойства деформированных четно-четных ядер (т. е. имеющих четное число протонов и четное число нейтронов). Низколежащие состояния этих ядер описываются системой вращательных уровней, аналогичных вращательным уровням двухатомной молекулы. Спин этих состояний, начиная с основного, последовательно принимает значения О, 2, 4 и т. д., и все эти состояния имеют положительную четность. Их энергии обычно с хорошей точностью описываются простой рота- [c.337]


Смотреть страницы где упоминается термин Свойства ядер редкоземельных элементов: [c.120]    [c.120]    [c.37]    [c.39]    [c.70]    [c.48]    [c.371]    [c.194]    [c.201]   
Смотреть главы в:

Редкоземельные элементы и их соединения -> Свойства ядер редкоземельных элементов




ПОИСК





Смотрите так же термины и статьи:

Свойства редкоземельных элементов

Свойства ядра

Элементы редкоземельные

Элементы свойства



© 2025 chem21.info Реклама на сайте