Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны в слабом периодическом

    В соответствии с особенностями электронной структуры и положением в периодической системе различают s-, p-, d- и /-металлы. К s-металлам относятся элементы, у которых происходит заполнение внешнего s-уровня. Это элементы главных подгрупп I и II групп периодической системы химических элементов Д. И. Менделеева — щелочные и щелочноземельные металлы. Они наиболее сильные восстановители среди металлов. К числу р-металлов относятся элементы III — IV групп, находящиеся в главных подгруппах и расположенные левее диагонали бор — астат. Металлические свойства этих элементов выражены гораздо слабее. Металлы IV— [c.141]


    Несмотря на общность основных химических свойств, отдельные металлы довольно сильно отличаются друг от друга своей химической активностью. Металлическая природа элементов проявляется тем ярче, чем слабее связаны валентные электроны с ядром в атомах элементов. Следовательно, наиболее активными являются металлы главных подгрупп I и II групп периодической системы, так называемые щелочные и щелочноземельные металлы. По той же причине среди элементов одной группы металлическая природа ярче выражена у тяжелых и слабее у легких элементов. По своей химической активности основные металлы можно расположить в ряд активности [c.112]

    Мы рассматривали до сих пор свойства элементов основных подгрупп периодической системы. Элементы побочных подгрупп 3—8 сохраняют металличность вследствие наличия в атомах слабо связанных электронов, так как происходящая в них достройка -подуровня не вызывает значительного увеличения энергии связи электронов. [c.61]

    Таким образом, теперь ясно видна необходимость использования трех квантовых чисел для описания энергии электрона. Каждое новое квантовое число вводилось для удовлетворения требований эксперимента. Однако даже с этими тремя квантовыми числами невозможно было полностью объяснить линейчатые спектры. Например, действие слабого магнитного поля приводит к так называемому аномальному эффекту Зеемана, который нельзя было понять на основе модели Бора — Зоммерфельда. Кроме того, у атома Бора и его вариантов было множество других недостатков. Одним из них, и, по-видимому, наиболее существенным, была невозможность применения теории Бора к более сложным атомам. Приложение ее к спектру даже такого простого атома, как атом гелия, приводило к полной неудаче, и все попытки понять основы периодической системы в рамках модели Бора были безуспешны. Это показывает, что все вышеизложенное верно только для одноэлектронной системы. Такое ограничение не имеет смысла, и поэтому очевидна необходимость найти что-то лучшее. [c.37]

    По своему химическому поведению бор — неметалл. Он не дает ионов В +. Его гидроксид — слабая кислота, по своим свойствам похожая на кремневую./ целом химия бора напоминает химию кремния, в чем выражается диагональное сходство этих элементов в соответствии с занимаемыми ими местами в периодической системе Д. И. Менделеева. Химические связи, образуемые бором, имеют ковалентный характер, что объясняется близостью валентных электронов к ядру. [c.251]


    В группах периодической системы Д. И. Менделеева с повышением порядкового номера элемента, т. е. сверху вниз, возрастают восстановительные свойства простых веществ, а окислительные — убывают. Так, например, в У1А-подгруппе кислород — окислитель, сера проявляет слабые окислительные свойства, а теллур в некоторых реакциях уже является восстановителем. Это объясняется возрастанием сверху вниз числа энергетических уровней атомов, их радиус становится больше и, следовательно, внешние электроны слабее удерживаются. Действительно, у атомов кислорода всего два энергетических уровня и радиус атома равен 0,066 нм, а у атомов теллура 5 уровней и радиус атома больше — он равен 0,137 нм. [c.212]

    З.5.1.З.1. Состав образца. По сравнению с поведением отраженных электронов, для которых коэффициент отражения монотонно возрастает с атомным номером, коэффициент вторичной электронной эмиссии относительно нечувствителен к составу и не обнаруживает сильной зависимости от атомного номера (рис. 3.29) [45]. Типичное значение б равно примерно 0,1 при энергии падающего пучка 20 кэВ, но для некоторых элементов, таких, как золото, имеет более высокие значения и равен приблизительно 0,2. Слабая периодическая зависимость, наблюдаемая на рис. 3.29, в некоторой мере коррелирует с числом электронов на внещних оболочках, радиусом атома и плотностью. [c.63]

    Следует отметить, что легкость окисления металлов в группах 1А и ПА значительно возрастает при увеличении 2, тогда как для группы Ш справедлива обратная закономерность точно так же, как и элементы группы 1А, ведут себя в отношении легкости окисления элементы группы УПА. Таким образом, в начале и в конце рядов периодической системы легкость окисления элементов в данной группе возрастает при увеличении 2 в группах же, расположенных в средней части таблицы, ири увеличении Z элементы окисляются труднее. Подробное рассмотрение рис. 38.7 позволяет сделать вывод, что некоторые нз этих особенностей можно отнести за счет лантаноидного сжатия, в результате которого степень увеличения энергии ионизации в ряду Н1—Н больше, чем в ряду Zr—С(1. Однако значительная часть этих особенностей обусловлена тем, что экранирующее действие -электронов на валентные 5-электроны слабое экранирующего действия /7-электронов это слабое экранирование является также главной причиной лантаноидного сжатия. [c.338]

    Рассеяние света молекулой как в форме релеевского рассеяния, так и в форме излучения комбинационного рассеяния основано на том, что колеблющееся Электрическое поле падающего светового луча, воздействуя на электроны, вызывает периодически изменяющийся электрический момент молекулы. Амплитуда колебания этого электрического момента тем больше, чем больше поляризуемость облучаемой молекулы. Более точная теория показывает, что интенсивность обычного рассеянного света зависит, помимо интенсивности облучающего света, только от поляризуемости облучаемой молекулы, а на интенсивность излучения комбинационного рассеяния, кроме интенсивности облучающего света, влияет изменение, которое испытывает поляризуемость вследствие непостоянства расстояний между атомными ядрами. Если на поляризуемость практически не влияют колебания ядер, так как электронное облако, окружающее одно ядро, только очень слабо воздействует на другое, то излучение комбинационного рассеяния может не обладать заметной интенсивностью. Сильное взаимное влияние электронных облаков всегда проявляется в тех случаях, когда атомы, участвующие в создании молекулы, имеют общие электроны. Поэтому спектры комбина- [c.345]

    Электроны в слабом периодическом нотенциале [c.227]

    Электроны в слабом периодическом потенциале [c.227]

    Элементы-металлы входят в состав всех групп периодической системы, кроме нулевой. Химические и физические свойства простых веществ, образованных элементами-металлами, — собственно металлов — имеют ряд особенностей. Металлический блеск, высокая тепло- и электропроводность определяются особенностями электронной структуры атомов металлов. Интересно, что электропроводность различных металлов сильно различается. Это можно легко показать, включив в электрическую цепь с гальванометром поочередно медную, железную и, например, нихромовую проволоку (сплав никеля и хрома). Проволока из меди обладает столь высокой электропроводностью, что гальванометр зашкаливает . Включение в тех же условиях в цепь проволоки из железа дает лишь слабое отклонение стрелки гальванометра. В случае нихромовой проволоки отклонение стрелки гальванометра незаметно — так велико электрическое сопротивление сплава нихром (на этом основано его использование в электронагревательных приборах). [c.252]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]


    Указать положение меди и серебра в периодической системе элементов и написать электронные формулы их атомов. Почему восстановительные свойства у меди и серебра выражены слабее, чем у щелочных металлов  [c.197]

    Атомы большинства металлов на внешнем энергетическом уровне имеют небольшое количество электронов. Так, среди типичных металлов по одному электрону на внешнем уровне содержат 16 элементов, по два - 58, по три - всего 4 элемента, и ни одного - только палладий. Посмотрите, как расположены металлы в Периодической системе. Их расположение позволяет предполагать слабую связь валентных электронов с ядром, т. е. низкие значения энергии ионизации и низкую электроотрицательность. [c.54]

    В этой главе рассматриваются элементы трех групп периодической системы IПА-группы бора, IVA-группы углерода и группы VA — сурьма и висмут. Атомы их характеризуются застройкой электронами р-подуровня наружного уровня. У этих элементов, за исключением алюминия, восстановительная способность выражена сравнительно слабо. В свободном состоянии они характеризуются свойствами, отличающимися от свойств типичных металлов. Некоторые из соответствующих элементарных веществ (кремний, германий) являются полупроводниками, иные (бор, алмаз) отличаются большой твердостью. Значение в современной технике как элементарных веществ, так и некоторых соединений этих элементов очень велико. [c.170]

    Типичными окислителями являются атомы элементов, на внешнем электронном уровне которых содержится 7, 6, 5 или 4 электрона. Самые сильные окислители среди простых веществ находятся в VII—VI группах периодической системы — атомы этих элементов принимают один или два электрона. Самые слабые окислители — атомы IV группы, они принимают четыре электрона. [c.194]

    Углерод и кремний — элементы IVA группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится четыре электрона из которых только 2/)-электрона непарные. При поглощении незначительного количества энергии атомы этих элементов переходят в возбужденное состояние, причем один из s-электронов перемещается на подуровень р и электронная конфигурация наружного энергетического уровня становится sp . В этом состоянии все электроны внешнего уровня непарные. Поэтому углерод и кремний образуют соединения, в которых им свойственны степени окисления как +4, так и —4. Размеры атомов углерода и кремния соответственно меньше, чем атомов бора и алюминия. В результате этого энергия ионизации атомов этих элементов высока. Сродство к электрону у них — величина небольшая. Поэтому у этих элементов слабо выражены как способность к потере, так и к присоединению электронов. Многочисленные соединения углерода и кремния образованы при помощи ковалентных связей. Таким образом, углерод и кремний являются неметаллами. [c.203]

    Следует отметить, что между радиусами нейтральных атомов, положительных и отрицательных ионов имеет место следующее соотношение радиус нейтрального атома больше радиуса положительного иона и меньше радиуса отрицательного иона. Это объясняется тем, что при отрыве от нейтрального атома электрона остающиеся электроны сильнее притягиваются к ядру атома, а потому радиус положительного иона уменьшается при присоединении электрона к нейтральному атому суммарное число электронов становится больше заряда ядра и они притягиваются к последнему слабее, в результате чего радиус отрицательного иона увеличивается. Радиусы нейтральных атомов, положительных и отрицательных ионов с увеличением порядкового номера изменяются периодически (рис. 47). [c.89]

    Свойства атомов, такие, как их размер, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронной конфигурацией атома. В их изменении с увеличением порядкового номера элемента наблюдается периодичность. Рассмотрим наиболее важные периодические свойства атомов. Атомы не имеют строго очерченных границ из-за волнового характера движения электронов. В расчетах пользуются так называемыми эффективными или кажущимися радиусами, определяемыми из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом атомы представляют в виде соприкасающихся друг с другом несжимаемых шаров. Радиус атома — важная его характеристика. Чем больше радиус атома, тем слабее удерживаются внешние электроны, т. е. слабее притягиваются к ядру. [c.34]

    Однако при температурах промышленного катализа полупроводниковые катализаторы часто находятся в области собственной проводимости и проявляют ряд характерных свойств 1) слабую зависимость каталитической активности от количества и характера введенной примеси 2) связь каталитических свойств, в первую очередь, с энергетическими уровнями валентных электронов атома и размерами ионов, а через них с положением элементов, образующих катализатор, в периодической системе Д. И. Менделеева  [c.168]

    Первым потенциалом ионизации называется энергия, необходимая для отрыва от изолированного атома в газообразном состоянии электрона, слабее других связанного с ядром. Второй потенциал ионизации — это энергия, необходимая для удаления второго электрона, и т. д. Энергия ионизации в периодической таблице возрастает слева направо для элементов одного периода, поскольку увеличивается заряд ядра (табл. 4). В столбце табл. 5 она уменьшается сверху вниз из-за увеличения расстояния электрона от ядра. Видно также, что энергия удаления электрона возрастает с числом отры- [c.39]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    В таблице приведены также значения эперх ии ионизации нейтрального А., т. е. энергии отрыва наибо.пее слабо связанного электрона они периодически изменяются в зависимости от X. Для атомов элементов с одним внешним электроном П8 (начиная с Ьт) энергии ионизации малы, для атомов элементов с двумя внешними -электронами они значигольио больше. По мере заполнения внешней оболочки пр (н = 2, 3, [c.159]

    Наличие этих двух скоростей привело к заключению, что в ступенчатом лидере мы имеем дело с двумя процессами а) процессом распространения лидера в подготовленном канале ионизованного воздуха, тождественным с процессом распространения стрельчатого лидера, и б) процессом образования ионизованного канала, названным пилотирующим стримером. Свечение пилотирующего стримера слищком слабо для того, чтобы этот стример мог быть запечатлён на бойсограмме. Пилотирующий стример представляет собой не что иное, как обычное в длинной искре распространение лавины электронов, сопровождаемое периодическим обратным распространением по каналу лавины положительного стримера. Стрельчатый лидер и каждое продвижение вперёд ступенчатого лидера представляют собой процесс, аналогичный отрицательному стримеру. [c.368]

    Экономию времени, достигаемую при импульсных экспериментах, можно использовать, с одной стороны, для когерентного сложения слабых периодически повторяющихся интерферограмм исследуемого соединения с помощью каких-либо электронных устройств для усреднения сигнала во времени (накопителей). Поскольку отношение сигнала к шуму растет пропорционально корню квадратному из числа повторений, то в результате накопления и последующего фурье-преобразования удается получить спектры высокого разрешения таких слабопо-глощающих ядер, как и др. при их естест- [c.53]

Рис. 9.4. Зависимость энергии электрона от волнового вектора в слабом периодическом потенпиале Рис. 9.4. <a href="/info/362259">Зависимость энергии</a> электрона от <a href="/info/332789">волнового вектора</a> в <a href="/info/902692">слабом периодическом</a> потенпиале
    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]

    Водородная связь образуется, с одной стороны, атомом водорода, связанным с каким-либо значительно более электроотрицательным элементом второго и, в меньшей степени, третьего периода периодической системы элементов (в первую очередь атомами N. О и Р) и, с другой стороны, атомом второго периода периодичб"ской системы элементов, имеющим неподеленную пару электронов. Эта связь значительно слабее ковалентной, в которой принимает участие тот же атом водорода сближение атома водорода с донором неподеленной пары электронов происходит в меньшей степени, чем прн образовании ковалентной связи. Обычно водородную связь обозначают пунктиром, например [c.107]

    Для атомов значение первого потенциала ионизации, соответствующего удалению наиболее слабо связанного электрона из атома в основном состоянии, составляют от 3,894 В для Сз до 24,587 В для Не. На рис. 12 приведена зависимость изменения потенциалов ионизации элементов от порядкового номера. Из ри сунка видно, что периодическая зависимость /=/(2) характерна зуется наличием экстремумов. Причем максимумы характернь) для атомов благородных газов, минимумы —для атомов щелоч- [c.69]

    Периодическое смещение электронов, участвующих в образовании связи, является причиной периодического изменения геометрии молекулы. Другими словами, появляется связь между колебательным движением электронов и ядер, т. е. движение электронов модулируется. Изменение положения атомов и атомных групп вызывает колебательное движение атомов и молекул. Энергия, расходующаяся на возбуждение этих колебаний, представляется падающим излучением. Поэтому наряду с линиями релеевского рассеяния Vst = vo наблкадают слабые парные линии npH Vo "vr. Разность волновых чисел Av = Vo — (vo Vr) соответствует волновым чис- ь-лам Vj определенных колебаний. Совокупность таких линий составляет спектр комбинационного рассеяния ра-ман-спектр). Наряду со стоксовыми линиями, характеризующимися более низкими волновыми числами (vq — Vp), в спектре комбинационного рассеяния появляются чрезвычайно слабые антистоксовы (-7о+ v ) линии, смещенные в коротковолновую область. Они возникают в том случае, если энергия колебательно-возбужденной молекулы суммируется с энергией первичного излучения (рис. 5.12,а). [c.221]

    Число электронов наружной оболочки и энергия связи их с ядром определяют химические свойства атомов. Так, три электрона лития неравноценны. Один из этих электронов связан с ядром атома слабее двух других, так как расположен дальше от ядра, чем первые два электрона. Этот электрон участвует в образовании химической связи поэтому называется валентным. Числом электронов наружной оболочки определяются валентные состояния, характерные для данного элемента, типы его соединений — гидридов, окислов, гидратов солей и т. д. Это можно проследить на любой группе элементов периодической системы. Известно, что в наружных оболочках атома азота, фосфора, мышьяка, сурьмы, висмута находится по пять электронов. Этим определяются их одинаковые, валентные состояния (—3, +3, +5), однотипность гидридов ЭНз,, окислов Э2О3 и ЭаОз и т. д. и, ггаконец, то, что все указанные эле-, менты находятся в одной группе периодической системы. [c.18]

    Вместе с углеродом и кремнием германий, олово и свинец составляют IVA группу периодической системы элементов. На наружном энергетическом уровне атомов этих элементов находится четыре электрона s p . Этим элементам свойственны обычно окислительные числа +2 и - -4, причем число +4 возникает вследствие перехода во время химических реакций одного из s-электронов на уровень р. Ввиду роста радиусов атомов и уменьшения энергии ионизации в группе IVA наблюдается усиление металлических свойств. Германий по электрическим свойствам явл яется полупроводником. Другие свойства металлов у него выражены очень слабо. В своих соединениях германий характеризуется ковалентным характером связей. Олово и свинец — металлы менее активные и типичные, чем металлы IA, ПА и IIIA групп. Это видно из преимущественно ковалентного характера связей в соединениях этих элементов, в которых их степень окисления +4. Также и во многих соединениях этих элементов, где их степень окисления +2, связи имеют смешанный характер. [c.208]

    Попять физический смысл валентности помогло учение о строении атомов и химической связл. Как уже отмечалось, электроны, которые участвуют в образовании химических связей между атомами, называются валентными. Зто электроны, наиболее слабо связанные с ядром. У химических элементов общее число валентных электронов в атоме, как правило, равно номеру группы периодической системы элементов Д. И. Менделеева. Так, атом серы (элемент VI группы) содержит всего 16 электронов, нз них валентных 6. К валентным относятся прежде всего электроны внешних незавершенных уровней. Однако валентными могут быть и электроны второго снаружи уровня (например, у -элементов), а также электроны третьего снаружи уровня (например, у /-элементов). [c.58]

    При реакции происходит перемеще[[ие электронов от восстановителя к окислителю, т. к. в восстановителе они связаны с ядром слабее, чем в окислителе. Следовательно, предсказание осуществления окислительно-восстановительной реакции возможно на основе знания энергетических уровней электронов в исходных веществах. Энергетические уровни электронов у восстановителя и окислителя зависят от их природы, состояния и окружающей среды. Они характеризуются потенциалами ионизации, сродством к электрону и окислительно-восстановительным потенциалам. Рассмотрим с этих позиций в качестве примера взаимодействие магпия с хлором и определим направление этой окислительно-восстановительной реакции. Магний—элемент ПА группа периодической системы, активный металл, сильный восстановитель. Распределение электронов в атоме следующее—1 5 , 28 2р 35 . Энергия возбуждения одного из двух внешних электронов мала и полностью перекрывается энергией образования химических связей. Поэтому один из электронов 35—подуровня может перейти на Зр — подуровень. В этом случае электронная структура атома будет иметь два неспаренных электрона, и, следовательно,он может проявлять валентность, равную двум. [c.32]


Смотреть страницы где упоминается термин Электроны в слабом периодическом: [c.159]    [c.584]    [c.159]    [c.380]    [c.536]    [c.149]    [c.170]   
Структура и симметрия кристаллов (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Слабов



© 2025 chem21.info Реклама на сайте