Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природные источники углеводородов и их переработка

    V 9.9. Природные источники углеводородов и их переработка [c.518]

    Природные источники углеводородов. Природные газы и их использование. Комплексная переработка нефти. Нефтепродукты и их использование. [c.207]

    В табл. VI.4 перечисляются основные вещества, загрязняющие воздух, и их количество, ежегодно выбрасываемое природными и искусственными источниками. Эти вещества являются первичными загрязнителями воздуха они испускаются в атмосферу в той форме, как они приведены в таблице. Например, простейший углеводород - метан СН - побочный продукт переработки природного топлива и главный компонент природного газа. Он также производится анаэробными бактериями и термитами при расщеплении ими органических веществ. [c.410]


    Большую опасность для окружающей среды представляют выбросы нефтяных углеводородов и разливы нефти (на каждый км в зоне месторождений и трасс нефтепроводов приходится до 0,02 т разлитой нефти в год). Кроме того, обостряются гуманитарные проблемы. Особенно остро загрязнение окружающей среды сказывается на малых народах в местах нефтедобычи и нефтепереработки. Экологические проблемы, имеющие глобальный социальный характер, наиболее ярко проявились в нефтеперерабатывающей отрасли. При этом следует отметить, что нефтеперерабатывающая промышленность использует в производстве невозобновляемые сырьевые источники, что приводит к дополнительному нагреву поверхности атмосферы Земли, развитию парникового эффекта, уменьшению озонового слоя, предохраняющего биосферу Земли от поступления дополнительной солнечной энергии. Решение этой проблемы требует в первую очередь углубления переработки нефти, что приведет к рациональному ее использованию и улучшению состояния природной среды. Добыча нефти должна [c.12]

    Важными природными источниками углеводородов являются газообразные вещества — горючие природные газы, попутные газы, газы переработки нефти и каменного угля. [c.348]

    Источники газообразных углеводородов — в первую очередь, природные и нефтяные попутные газы, а также некоторые синтетические газы, полученные при переработке горючих ископаемых (например, термическая и термокаталитическая переработка нефти и нефтепродуктов, термическое разложение — газификация — твердого и жидкого топлив, а также коксование твердого топлива — коксовый газ). В отличие от природных, синтетические газы наряду с алканами содержат также и ненасыщенные углеводороды, значительные количества водорода и др. Природные газы содержат в основном метан и менее 20 % в сумме этана, пропана и бутана, примеси легкокипящих жидких углеводородов — пентана, гексаиа и др. Кроме того, присутствуют малые количества оксида углерода (IV), азота, сероводорода и благородных газов. Многие горючие природные газы, залегающие на глубине не более 1,5 км, состоят почти из одного метана. С увеличением глубины отбора содержание гомологов метана обычно растет. Образование горючих природных газов — в основном результат катагенетического преобразования органических веществ осадочных горных пород. Залежи горючих газов формируются в природных ловушках на путях его миграции. Миграция происходит при статической или динамической нагрузке пород, выжимающих газ, а также свободной диффузии газа из областей высокого давления в зоны меньшего давления. Подземными природными резервуарами для 85 % общего числа газовых и газоконденсатных залежей являются песчаные, песча-но-алевритные и алевритные породы, нередко переслоенные глинами. В остальных 15 % случаев коллекторами газа служат карбонатные породы. Все газовые и газонефтяные месторождения приурочены к тому или иному газонефтеносному осадочному (осадочно-породному) бассейну, представляющему собой автономные области крупного и длительного погружения в современной структуре земной коры. Все больше открывается газовых месторождений в зоне шельфа и в мелководных бассейнах, например Северное море. Наиболее крупные газовые месторождения СССР—Уренгойское и Заполярное — приурочены к меловым отложениям Западно-Сибирского бассейна. [c.194]


    Ароматические углеводороды 499 Тест № 17 по теме Ароматические углеводороды 514 9.9. Природные источники углеводородов и их переработка 518 9.10. Понятие о ядохимикатах 523 [c.726]

    Проще всего ответить на вопрос Из чего Очевидно — из более простых молекул. Из более простых чаще всего означает и из более доступных. Доступные природные источники органических соединений — это ископаемое органическое сырье (нефть, газ, уголь) и живые организмы. Их состав и состав продуктов их переработки в конечном счете и определяют тот спектр соединений, которые могут быть синтезированы на этой основе. Например, общеизвестный современный материал — полиэтилен — смог стать продуктом многотоннажного производства потому, что его синтез проводится полимеризацией этилена — дешевого сырья, продукта переработки природного газа. Огромная область промышленной и лабораторной химии — химия ароматических соединений (полимеров, красителей, лекарственных препаратов, взрывчатых веществ и т. д.) — базируется на том, что фундаментальный общий элемент их структуры (бензольное кольцо) имеется в готовом виде в углеводородах, вьщеляемых в масштабах миллионов тонн при переработке каменного угля и нефти. Вискоза и ацетатное волокно, нитроцеллюлоза и пороха, глюкоза и этиловый спирт — это все продукты, получаемые с помощью химических превращений из полисахаридов, самого распространенного класса органических соединений на Земле. Менее масштабный, но исключительно важный для практических нужд синтез множества лекарственных веществ, таких, как витамины, гормоны или антибиотики, также стал возможным благодаря наличию природных источников первичного сырья, вьщеляемого из различных живых организмов. [c.7]

    Тема Природные источники углеводородов и их переработка . В ней получает развитие система понятий о химическом производстве, основы которой были заложены еще в курсе неорганической химии. Объектами изучения являются природный газ, нефть и каменный уголь и получаемые из них продук- [c.36]

    В заключение раздела вы познакомитесь с природными источниками углеводородов — нефтью и природным газом — и способами их переработки. [c.454]

    Основными источниками углеводородов являются газообразные ьещества — горючие природные и попутные газы (табл. 13), газы переработки не( )ти и каменного угля. [c.211]

    Экология атмосферы Проблема загрязнения атмосферы в отличие от проблемы загрязнения почв, водоемов, подземных вод носит глобальный характер и в настоящее время представляется наиболее сложной Основными источниками загрязнения атмосферы являются вьщеление углекислого газа в результате сжигания углеводородов, что ведет к появлению парникового эффекта на Земле, то есть общему потеплению климата, а также поступление газообразных углеводородов в атмосферу при газо-, нефтедобыче (природный и попутный газы), разрывах газопроводов, промышленных газообразных выбросах, испарениях при переработке, транспортировке, хранении, заполнении различных емкостей нефтью и нефтепродуктами, сушке лакокрасочных покрытий Результатом появления легких углеводородов в верхних слоях атмосферы являются как парниковый эффект, так и, видимо, уменьшение озонового слоя, что может иметь отрицательные последствия для жизни на [c.254]

    Неисчерпаемым источником углеводородов служат нефть и природные горючие газы, продукты их переработки и переработки каменных углей. [c.131]

    Таким образом, из природных и попутных нефтяных газов могут быть получены различные предельные углеводороды, а из газов нефтепереработки — непредельные углеводороды. Пути и методы дальнейшей переработки углеводородов, полученных из газов, определяются экономическими факторами, зависящими в свою очередь от целого ряда конкретных условий состава газа, наличия мощностей для их переработки, потребности в тех нли иных химических продуктах, территориального размещения источников сырья и потребителей и др. [c.70]

    Толуол, полученный из природных источников или путем переработки нефти, не является химически чистым продуктом. В каменноугольном толуоле содержатся парафиновые и олефиновые углеводороды, температуры кипения которых близки к температуре кипения толуола. Количество примесей достигает 4—5%. Кроме, парафинов в толуоле содержится около 1—1,5% бензола, 0,5—1% ксилола и незначительное количество фенолов и пиридиновых оснований. В природном нефтяном и пирогенетическом толуоле, не подвергшемся специальной очистке, содержатся бензины, количество которых иногда достигает 10—15%. [c.154]

    В настоящее время многочисленные продукты основного органического синтеза производят из углеводородных газов. Важнейшим сырьем в современной промышленности основного органического синтеза являются парафиновые углеводороды (метан и его гомологи), олефины (этилен, пропилен, н-бутилен, ызо-бутилен), диолефины (дивинил, изопрен), ацетиленовые углеводороды (ацетилен), ароматические соединения (бензол, толуол, нафталин). Неисчерпаемым источником углеводородов служат нефть, природные газы и продукты их переработки. [c.197]


    Из приведенной на рис. 14 схемы (стр. 46—47), в которой показаны природные источники сырья и пути получения алифатических углеводородов, видны некоторые направления использования ацетилена. Основными источниками получения алифатических соединений, в том числе олефинов и продуктов их превращений, а также ароматических и гетероциклических соединений, являются нефть, уголь и продукты их переработки, например смола. Синтезы на основе окиси углерода также позволяют получить парафины, олефины и их простейшие производные, например метанол и высшие спирты. На этих синтезах основано и получение производных углеводородов с длинной цепью углеродных атомов, обладающих моющими свойствами. С открытием синтезов на основе ацетилена возникли совершенно новые направления химической переработки исходных веществ. [c.175]

    Газы нефтепереработки наряду с природными и попутными газами являются ценным источником углеводородов, образуются они в качестве побочного продукта при термической и каталитической переработке нефтяного сырья. Необходимость обеспечения привела к тому, что в настоящее время кроме физических методов переработки нефти прямой перегонкой все шире внедряется ее химическая переработка с применением различных видов термического крекинга и пиролиза. При такой переработке нефти и нефтепродуктов происходят их различные химические превращения расщепление больших молекул, взаимодействие осколков этих молекул между собой и с другими молекулами, изомеризация и полимеризация части продуктов расщепления. [c.10]

    Первое сырье для производства органических материалов было получено сухой перегонкой (карбонизацией, пиролизом) каменного угля, т. е. нагреванием угля без доступа воздуха. Продуктами такой сухой перегонки являются в основном ароматические углеводороды и их производные из них получали прежде всего синтетические красители, и производство красителей стало первой большой отраслью промышленности органических материалов. Постепенно развивались и другие важные отрасли, как, например, промышленное сбраживание, переработка растительных и животных жиров и масел и т. д. Но с течением времени постоянно возрастало значение природного газа и нефти как источников химического сырья. Поэтому все шире разрабатывались и усовершенствовались соответствующие химические процессы. В настоящее время из природного газа и нефти по- [c.240]

    Третья часть посвящена отдаленной перспективе развития нефтяной и газовой промышленности. Это взгляд за пределы 2010 г. Естественно, что здесь могут быть даны только самые общие прогнозы по таким вопросам, как поиски новых месторождений и ресурсы углеводородов России на фоне мировых, география нефтедобычи и газодобычи в XXI веке и тенденции в изменениях уровней добычи. В этой части, которую можно назвать "послезавтра нефтяной и газовой промышленности", рассматриваются и нетрадиционные источники углеводородов. На какой срок хватит ресурсов нефти и газа в недрах России Каковы будут природные характеристики разрабатываемых запасов в XXI веке Чем может быть заменен традиционный природный газ Каковы будут тенденции в развитии переработки нефти Это главные вопросы, рассматриваемые в третьей части. [c.6]

    Бурное развитие нефтеперерабатывающей промышленности привело к накоплению огромного количества нефтяных загрязнений, вопрос об утилизации которых стоит в настоящее время очень остро. Не вызывает сомнения и то, что в природных экосистемах обязательно находятся микроорганизмы-деструкторы таких соединений, использующие эти соединения в качестве источника углерода и энергии. Несмотря на существование целого ряда физических и химических методов переработки таких ксенобиотиков, неизбежна биологическая детоксикация остатков с целью окисления наиболее токсичных углеводородов. [c.120]

    Синтез полимеров состоит из двух этапов получения мономеров и превращения их в полимеры. Основным источником мономеров является нефтехимический синтез, задача которого состоит в получении различных химических продуктов из нефти и газов (природных и попутных) синтетических моющих средств, растворителей, присадок, топлив, смазочны.х масел, аммиака, водорода и многих других. В промышленности нефтехимического синтеза используют в больших масштабах предельные, непредельные, ароматические и, в меньшей степени, нафтеновые углеводороды. При переработке нефтехимического сырья применяются процессы дегидрирования, изомеризации и циклизации, алкилирования, полимеризации и конденсации, а также галогенирования, нитрования, сульфирования, окисления и т. д. [c.384]

    Как правило, основные источники природного сырья кроме необходимого компонента содержат и другие ценные вещества. К примеру, в железной руде часто присутствуют медь, титан, ванадий, кобальт, цинк, фосфор, сера, свинец и другие редкие элементы. В полиметаллических рудах содержится более 50 ценных элементов, в том числе олово, медь, кобальт, вольфрам, молибден, серебро, золото, металлы платиновой группы. Часто сопутствующие элементы обладают большей ценностью, чем основные, ради которых организовано производство. В природном газе находятся азот, гелий, сера, а в составе газового конденсата — гомологи метана. В нефтях содержатся различные соединения серы и им сопутствуют попутные газы, в состав которых входят ценные углеводороды, а также пластовые воды с содержанием йода, брома и бора. Полное использование вещественного потенциала сырья выходит за рамки одной ХТС и становится возможным только при комплексной переработке сырьевых ресурсов, обеспечиваемой многими отраслями промышленности. [c.307]

    Возможно, что когда-нибудь поставщиком необходимых пищевых белков станет химический синтез, но сейчас имеется еще немало неиспользуемых природных ресурсов. Значительных успехов предстоит достигнуть, например, на путях использования ряда новых сельскохозяйственных источников белка и микробиологической переработки неорганических веществ, углеводных отходов и углеводородов нефти в усвояемые белки. [c.610]

    Единственным источником алканов являются природные запасы нефти и газа. Кроме того, углеводороды образуются при коксовании каменного угля, переработке сланцев и органических отходов производства и быта. В состав природного газа входят метан (98%), этан и пропан. Метан находится также в рудничном газе угольных шахт, болотном газе, который образуется при гниении целлюлозы в отсутствие воздуха. [c.381]

    Низкомолекулярные олефиновые углеводороды получаются в процессах термической и термокаталитической переработки природного газа и нефтяных дистиллятов, при коксовании угля, в виде сложных смесей с другими углеводородами и неуглеводородными соединениями. Газы пиролиза, являющиеся основным источником этилена и пропилена, кроме этих двух компонентов, содержат водород, метан, этан, пропан, углеводороды С и Сб-В них содержатся также некоторые количества сероводорода и сероорганических соединений, углекислого газа, окиси углерода, ацетилена, влаги и др. [c.65]

    Современная мировая нефтехимическая промышленность базируется на глубокой переработке нефти, нефтяного попутного и природного газов в качестве наиболее доступных и массовых источников природных углеводородов. В связи с вероятным значительным исчерпанием природных ресурсов углеводородного сырья к концу первой половины XXI в. возникла проблема поиска иных источников углеводородов либо других о])ганических материалов, которые могли бы давать углеводороды. При )(1дные ресурсы этих ископаемых органических материалов хотя по запасам в земной коре и превышают запасы нефти и природного газа, но также исчерпаемы (в XXII в.). Возникает проблема поиска источников возобновляемого органического сырья. [c.352]

    Источниками получения углеводородов ряда С4 (насыщенных и ненасыщенных) являются нефть и природный газ. Свыше 70% общего количества углеводородов С4, вырабатываемых в США, получают при переработке нефти из природного газа производят в основном насыщенные углеводороды. [c.36]

    Источниками получения углеводородов С5 (насыщенных и ненасыщенных) являются продукты переработки природного газа и нефти. Данные по производству углеводородов фракции С для химической переработки в США представлены ниже 3]  [c.48]

    Нефтехимическая промышленность, занятая переработкой нефти, является важнейшей отраслью химического производства и дает в некоторых странах более половины всех производимых органических соединений, из которых на первом месте стоят простые непредельные и предельные углеводороды (этилен, пропилен, бутадиен, метан, пропан и т. д.). Природные газы (преимущественно метан) являются не только высококачественным топливом, но и источником получения ценных органических соединений. [c.16]

    При изучении темы Природные источники углеводородов учащиеся знакомятся с основами промышленной переработки природного сырья органического происхождения (нефть, газ, каменный уголь и др.) Основное политехническое содержание этой темы — переработка нефти и горючих газов, коксохимическое производство. Наибольшая возможность использования аудиовизуальных средств имеется при изучении переработки нефти. Кинофрагмент Очистка нефти , Перегонка нефти , Крекинг нефти , Каталитический крекинг дают достаточно полное пред- [c.60]

    В XX в. с каменным углем успешно соперничают нефть и природный газ. Согласно некоторым теориям нефть образовалась из останков древних организмов. Следовательно, источники этого сырья тоже следует искать в живой природе. В результате переработки нефти получают различные углеводороды, являющиеся ие только топливом для двигателей внутреннего сгоранпя и реактивных, но и ценнейшим и незаменимым сырьем для промышленного органического синтеза. Главной составной частью природного газа является метан. В настоящее время используют метан и как ценное топливо, и в органическом синтезе (например, для получения ацетилена). [c.14]

    Элементный синтез органических веществ имел только прин-цишхальное, но пе практическое значение, так как многие из веществ, синтезированных из элементов, проще получать из природных источников. Синтезы жиров, спирта и муравьиной кислоты Бертло — это частичные синтезы, в основе которых лежат аналитические данные. Они не были иринципиально новыми в методическом отношении по сравнению с работами его предшественников. Пирогепные синтезы углеводородов, занимавшие центральное место в исследованиях Бертло, получили практическое развитие лишь в XX в. в связи с появлением каталитического органического синтеза и разработкой новых методов переработки углеводородного сырья. [c.53]

    Для переработки газа с содержанием Сз 1,ыдш е не более 70— 75 г/м применяют схемы НТК, где единственным источником холода служат турбодетандерные установки, обеспечивающие глубокое извлечение целевых компонентов этана, пропана и более тяжелых углеводородов. При переработке природных газов детан-дерные установки используют пластовую энергию газа, при переработке нефтяного газа его предварительно компримируют для создания перед детандером необходимого давления. Часто в схемах с внутренним холодильным циклом наряду с детандированием частично отбензиненного газа применяют дросселирование жидких потоков. [c.180]

    Источником получения гелия являются природные газы. Для эксплуатируемых месторождений характерно высокое содержание гелия — от 0,9 до 5,7 мол. %. Помимо гелия природные газы обычно содержат 10-30 мол. % азота, а также метан и незначительные примеси менее летучих углеводородов, углекислоты, влаги, сероводорода, водорода. Так как гелий наиболее летучий из известных газов, то его получение сводится к конденсации всех остальных компонентов смеси и окончательной очистке методом низкотемпературной адсорбции. Извлекается гелий методами глубокого охлаждения, причем процесс осуществляется в две стадии получение так называемого сырого гелия и последутощая его очистка. В таблице 8.28 указан средний состав природного газа, поступающего на переработку, а также состав переработанного газа после извлечения из него гелия. [c.916]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    Оценки продуктивности были получены лишь для лабораторных культур, выращенных в условиях постоянного освещения, и в случае непредсказуемых вспышек размножения водорослей в природных условиях. Для установления продуктивности В. Ьгаипп при массовом культивировании использовать эти оценки довольно сложно. По мнению группы австралийских ученых, прежде всего нужно. провести следующие исследования 1) определить условия, обеспечивающие максимальную скорость роста и образования углеводородов в лабораторных и полевых условиях 2) на опытных установках выяснить, можно ли при интенсивном выращивании добиться скорости роста В. ЬгаипН, соизмеримой с известной для других водорослей 3) разработать соответствующие методы выращивания, сбора и переработки 4) оценить применимость получаемого продукта как альтернативного источника топлива и смазочных веществ. [c.56]


Смотреть страницы где упоминается термин Природные источники углеводородов и их переработка: [c.427]    [c.7]    [c.5]    [c.2]    [c.175]    [c.30]   
Смотреть главы в:

Химия Пособие-репетитор для поступающих в вузы Изд2 -> Природные источники углеводородов и их переработка

Химия пособие-репетитор для поступающих в ВУЗы -> Природные источники углеводородов и их переработка




ПОИСК





Смотрите так же термины и статьи:

Природный газ переработка



© 2025 chem21.info Реклама на сайте