Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт диоксида углерода

    Pu . 5.41. Принципиальные схемы трубопроводного транспорта диоксида углерода  [c.248]

    Итогом С4-ПУТИ является транспорт диоксида углерода и водорода из клеток мезофилла в хлоропласты клеток обкладки проводящего пучка с использованием двух высокоэнергетических фосфатных связей АТФ. Поскольку для обеспечения транспорта требуется энергия АТФ, работу данного механизма вполне можно сравнить с механизмом работы насоса. [c.277]


    Транспорт диоксида углерода [c.170]

    В связи с быстрым развитием промышленности и транспорта в атмосферу выбрасывается большое количество различных кислых компонентов — оксида и диоксида углерода, диоксида серы, сероводорода, оксидов азота. [c.19]

    Наличие воды в сырье нежелательно также и из-за отстоя и скопления ее в низких частях оборудования и трубопроводов. Это ухудшает условия транспорта сырья особенно по магистральным трубопроводам. Следы воды при наличии сероводорода и диоксида углерода усиливают коррозию металлов. Таким образом, установка осушки углеводородного сырья является обязательной составной частью газоперерабатывающего завода. [c.86]

    Все вещества, которые нас окружают и которые мы используем в своей деятельности, условно можно разделить на две большие совокупности возникшие естественным путем в ходе эволюции Земли и полученные искусственно, синтетически. К первым можно отнести кислород воздуха, воду, глину (глинозем), различные соли, нефть, уголь, т. е. вещества минерального, растительного и животного происхождения. С ними вы познакомились в курсе природоведения и в начальном курсе химии. Одни из этих веществ играют очень важную и заметную роль в тех постоянно и непрерывно идущих процессах круговорота веществ, которые создают устойчивый баланс их в атмосфере и гидросфере. Так, достаточно устойчивым, постоянным оказывается и поддерживается отношение (баланс) углекислого газа и кислорода воздуха. Химическое изучение и описание этих веществ показывает, что они имеют разнообразные состав, строение и свойства. Так, в атмосфере находятся атомы инертных газов (Не, Ме, Аг, Кг, Хе), молекулы кислорода Оа, азота N2, диоксида углерода (углекислого газа) СОг, пары воды Н2О, озон Оз, некоторое количество газообразных и твердых веществ (пыль), являющихся как результатом естественных процессов, так и отходами (выбросами, побочными продуктами) химических производств, транспорта, переработки сырья и т. п. [c.5]

    Химическое изучение и описание этих веществ показывает, что они имеют разнообразные состав, строение и свойства. В атмосфере находятся атомы инертных газов (Не, Ме, Аг, Кг, Хе), молекулы кислорода О2, азота N2, диоксида углерода (углекислого газа) СО2, пары воды Н2О, озон О3, некоторые количества газообразных и твердых веществ (пыль), являющихся как результатом естественных процессов, так и отходами (выбросами, побочными продуктами) химических производств, транспорта, переработки сырья и т. п. [c.6]


    Оксид углерода —очень ядовитый газ, он образуется при неполном сгорании бензина. Его токсичность обусловлена тем, что он прочно связывается с гемоглобином крови, и поэтому препятствует переносу кислорода и диоксида углерода в организме. Хотя в больших городах концентрация. оксида углерода возрастает вследствие развития автомобильного транспорта, суммарный его уровень в природе остается приблизительно постоянным, благодаря тому что некоторые почвенные организмы способны окислять его до диоксида углерода — естественной составляющей атмосферы Земли. В последние годы ставятся опыты по выводу выхлопных газов автомобилей через горелки с катализаторами, в которых происходит полное сгорание оксида углерода с образованием диоксида углерода  [c.333]

    Продукция химичеоких предприятий (источник 3) представляет значительный интерес в связи с высокой чистотой реагента. Концентрация СОг в обычной продукции производства аммиака, водорода, спирта и других веществ составляет 90—99%. Выделяемый из основной технологической линии диоксид углерода может быть в жидком или газообразном состоянии. В последнем случае может возникнуть необходимость сжижения СОг, если проектом предусмотрен магистральный транспорт жидкого диоксида углерода. [c.238]

    Охлажденный и полностью сконденсировавшийся диоксид углерода подается в трубопровод. Транспорт на всем протяжении осуществляется в жидком состоянии (линии 3, 5). Для этой цели минимальное рабочее давление во всех без исключения точках трассы поддерживается больше соответствующего значения упругости паров, т. е. для линейной части должно соблюдаться условие р>рв. Вариация этой схемы — схема с промежуточной насосной станцией. Процесс сжатия СОг насосе условно показан линией 4 (см. рис. 5.44). Рассматриваемая схема 3 применима и в том случае, если диоксид углерода от источника [c.249]

    Цистерны, баллоны и другие емкости с жидким диоксидом углерода, их маркировка, эксплуатация и хранение должны соответствовать Правилам устройства н безопасной эксплуатации сосудов, работающих под давлением, утвержденным Госгортехнадзором СССР, и Правилам перевозок грузов Министерства путей сообщения. Транспортирование баллонов с диоксидом углерода должно осуществляться в соответствии с Правилами перевозок опасных грузов, действующими на соответствующих видах транспорта. Гарантийный срок хранения жидкого диоксида углерода в баллонах по ГОСТ 949—73 2 года, в цистернах — 6 мес со дня изготовления продукта. [c.265]

    В теплоэнергетике источником массированных атмосферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции и любые промышленные и коммунальные предприятия, работа которых связана со сжиганием топлива. В состав отходящих дымовых газов входят диоксид углерода, диоксид и триоксид серы и ряд других компонентов, поступление которых в воздушную среду наносит большой ущерб как всем основным компонентам биосферы, так и предприятиям, объектам городского хозяйства, транспорту, и, разумеется, населению городов. [c.24]

    В природном и попутном газах отдельных месторождений содержатся сероводород и сероорганические соединения от нескольких миллиграммов на литр до 25%, Кроме сероводорода в газе содержится диоксид углерода, по своим физико-химическим свойствам близкий к сероводороду. Суммарное содержание сероводорода и диоксида углерода обычно называется кислым газом. Технические условия на товарный газ лимитируют содержание сероводорода до 0,02 г/м газа. Содержание диоксида углерода ГОСТом не лимитируется, однако его присутствие в товарном газе нежелательно, так как он является балластом и при транспортировке газа увеличивает затраты на транспорт. При использовании газа в низкотемпературных процессах диоксид углерода замерзает и откладывается на поверхности теплообменной аппаратуры, что снижает теплопроводность через стенки и может полностью перекрыть движение газа. Поэтому диоксид углерода рационально извлекать из газа вместе с сероводородом. [c.192]

    В связи с вводом в эксплуатацию газовых и газоконденсатных месторождений в осложненных условиях на Крайнем Севере при наличии в газе сероводорода и диоксида углерода актуальной стала задача совершенствования процесса и технологии применения ингибиторов гидратов в системах добычи и подготовки газа к транспорту. [c.534]

    Именно эта реакция используется организмом для удаления из клеток углекислого газа, образовавшегося в них в результате жизнедеятельности. Некатализируемая гидратация СО2 протекает слишком медленно, чтобы обеспечивать его эффективный транспорт от тканей к легким. Активность же карбоангидразы поражает воображение одна молекула фермента катализирует каждую минуту гидратацию 3,6Т0 молекул диоксида углерода. [c.131]

    Глубокое каталитическое окисление органических веществ является наиболее перспективным методом очистки от токсичных органических веществ отходящих газов-промышленных производств и выхлопных газов автомобильного транспорта и др.,-что чрезвычайно важно для охраны окружающей среды. В результате применения активных каталитических систем удается превратить органические вещества в безвредные продукты-диоксид углерода и воду. [c.4]


    В окислительных превращениях следует различать полное и неполное окисление. Под полным окислением понимают процесс сгорания органических веществ с образованием воды, диоксида углерода, оксидов азота и серы. Основное назначение этого процесса — получение тепловой энергии для промышленности, транспорта и в быту. Но в промышленности органического синтеза этот процесс является нежелательным, так как ведет к снижению выхода целевого продукта и большому количеству выделяемого тепла. [c.141]

    Эритроциты Костный мозг 5 ООО ООО Транспорт кислорода и частично диоксида углерода 0 [c.143]

    Транспорт подлежащих экскреции растворимых конечных продуктов метаболизма к органам вьщеления. Так, мочевина, образующаяся в печени, переносится в почки, откуда выводится с мочой, а диоксид углерода, образующийся в процессе тканевого дыхания всеми клетками, транспортируется в легкие и там выводится наружу. [c.166]

    Транспорт кислорода из легких ко всем частям тела и диоксида углерода в обрат- [c.166]

    Транспорт кислорода гемоглобином. Важнейшей функцией крови является ее способность к переносу молекулярного кислорода из легких в ткани и диоксида углерода из тканей в легкие. Необходимо отметить, что кровь является хотя и жидкой, но тканью, так как состоит из клеточного и межклеточного веществ (состав крови приведен в табл. 5.1). Дыхательная функция крови сформировалась в долгом процессе эволюции в период перехода от анаэробного существования организмов к аэробному. В ходе эволюции у позвоночных животных выработались два основных механизма, обеспечивающие постоянное снабжение клеток достаточным количеством кислорода. Первый — это система кровообращения, в результате деятельности которой к клеткам активно поставляется кислород. Если бы система кровообращения отсутствовала у аэробных организмов, то их размеры не превышали бы миллиметра, поскольку из-за низкой скорости самопроизвольной диффузии кислорода его поступление в организм не удовлетворяло бы потребностям клеток. Появление в процессе эволюции гемопротеинов — это второе важнейшее приспособление, позволившее преодолеть ограничения, накладываемые низкой растворимостью кислорода в воде, и благодаря этому повысить эффективность снабжения клеток кислородом. [c.209]

    Эта реакция аналогична реакции переноса электронов от углеродсодержащих соединений к кислороду с образованием воды и диоксида углерода, осуществляемой аэробными бактериями и митохондриями. Вначале, однако, было не совсем ясно, как синтезируется АТР при метаногенезе у метанобразующих бактерий за счет фосфорилирования, сопряженного с транспортом электронов, или в реакциях субстратного фосфорилирования. [c.83]

    На большинстве месторождений Западной Канады основным механизмом коррозионного разрушения в системах сбора и транспорта газа является кислотная (сероводородная) коррозия, обусловленная наличием в газе сероводорода (Н28) и диоксида углерода (СО2). Воздействие на металл НгЗ кроме того может привести к водородной хрупкости или сульфидному коррозионному растрескиванию (СКР) последнего. Процесс кислотной коррозии зависит от адсорбции ионов водорода на поверхности металла, за которой следует катодная коррозионная реакция. В связи с этим для обеспечения хорошей защиты ингибитор должен обладать такой химической структурой, которая бы обеспечивала эффективную адсорб- [c.6]

    Таким образом, для производства органических веществ, включая и производство пластмасс, необходим водород и диоксид углерода. Штейнберг и др. [9] предложили водород, выделенный в результате электролиза воды, перерабатывать в метанол, который представляет собой более удобное, чем водород, топливо для наземного транспорта. Однако, по-видимому, метанол будет стоить дороже, чем водород. [c.477]

    Основными источниками загрязнения атмосферного воздуха являются выбросы, образующиеся при сжигании топлива на промышленно-энергетических объектах (ТЭЦ и др.) и в автомобильных двигателях (см. ч. I, гл. I). Развитие энергетики, промышленности и транспорта сопровождается ростом выброса в атмосферу вредных веществ — диоксида серы, оксидов углерода и азота, углеводородов. Подсчитано, что за период 1975—1980 гг. количество газовых выбросов в атмосферу возросло на 30%, причем соответственно возрос экономический ущерб от загрязнения воздуха, св-ставляющий ежегодно десятки миллиардов рублей. [c.71]

    При добыче, транспорте и переработке сероводородсодержащего природного газа возможно поступление в атмосферу сернистых соединений, в том числе сероводорода, низших меркаптанов, диоксидов серы, серооксида углерода. [c.76]

    Кривая связывания кислорода гемоглобином зависит от pH при данной величине р(Ог) сродство к кислороду уменьшается номере уменьшения pH (эффект Бора). Гликолиз представляет собой анаэробный процесс, приводящий к образованию молочной кислоты и диоксида углерода. Оба эти соединения имеют тенденцию к понижению pH и способствуют высвобождению кислорода из оксигемоглобина там, где в этом есть необходимость, В дезоксигемоглобине, напротив, содержатся немного более основные, чем у оксигемоглобина, группы (азот имидазола His-146 в р-цепях и His-122 в а-цепях, а также аминогрупп Val-1 в а-цепях), в силу чего дезоксигемоглобин связывает протон после высвобождения кислорода, что важно для обратного транспорта диоксида углерода к легким. Карбоангидраза катализирует образование бикарбоната в эритроцитах из диоксида углерода и воды, и ионы бикарбоната могут связываться с протонированными группами дезокси-гемоглобина. В легких дезоксигемоглобин перезаряжается кислородом, эффект Бора вызывает высвобождение бикарбоната, из которого под действием карбоангидразы образуется диоксид углерода, который затем выдыхается. Транспорт диоксида углерода дезоксигемоглобином приводит также к образованию производных карбаминовой кислоты с аминогруппами белка (схема (9) . Хотя оксигемоглобин также связывает диоксид углерода, у дезоксигемо-глобина эта способность выше ввиду большей доступности аминогрупп. [c.558]

    Функции схожи с функциями Ка+ и К+, например поддержание анионно-катионного и осмотического баланса. Вовлечен в хлорвдный сдвиг , происходящий во время транспорта диоксида углерода в крови. Содержится в желудочном соке в составе соляной кислоты [c.281]

    Транспорт диоксида углерода гемоглобином. Гемоглобин не только переносит кислород от легких к периферическим органам и тканям, но и осуш ествляет транспорт диоксида углерода от тканей к легким. Гемогло-бин связывает СО2 сразу после высвобождения кислорода примерно 15 % СО2, присутствующего в крови, переносится молекулами гемоглобина, причем молекула СО2 присоединяется не к самому гему, а к NH2-rpynnaM полипептидной цепи глобина — так образуется карбогемоглобик. [c.215]

    Системы транспортировки и закачки СОа. Система магистральной транспортировки и система закачки СОа в пласт являются взаимосвязанными элементами крупномасштабной технологии СОа. На рис. 5.39 и 5.40 приведена качественная модель систем транспортировки и закачки СОа в нефтяной пласт. Краевыми условиями служат значения параметров источника (в частности давление Рнач) и пласта (пластовое давление Рпл)-Здесь показана транспортировка СОа по магистральному трубопроводу и распределительным линиям в газообразном состоянии, в скважине — в основном в жидком и закритическом состояниях. Фактически возможны многочисленные термодинамические варианты течения диоксида углерода. На рис. 5.41 лриведена одна из наиболее вероятных принципиальных схем трубопроводного транспорта СОа- Если от источника диоксид углерода поступает в газообразном состоянии цри невысоком давлении и докритической температуре рнач<рз, 7 нач<7 кр) или при сверхкритической температуре (Т нач кр Рнач <ркр), то перекачка осуществляется по схемам 1—3. [c.245]

    На практике диоксид углерода от источника может поступать на головные сооружения магистрального трубопровода и в двухфазном состоянии, хотя это и является для однокомпонентного продукта, как правило, неравновесным состоянием. Технологическая схема транспорта в этом случае может быть реализована в нескольких вариантах (см. рис. 5.41, 5.47), выбор которых зависит главным образом от соотношения температуры грунта и температуры поступающей от источника газожидкостной смеси. Если Т>Ттях, т. е. температура смеси выше максимально возможной температуры грунта по глубине залегания, то целесообразно смесь предварительно сконденсировать и переохладить в таплаобменной секции аппарата воздушного охлаждения ABO или специальной установке (линия 1 на рис. 5.47), а после этого осуществить безнасосную (линия 2) или насосную перекачку. [c.251]

    Другой важной функцией океанов и морей является регулирование содержания в атмосфере углекислого газа (диоксида углерода). Его относительное содержание в атмосфере невелико и составляет всего лишь 0,03— 0,04 %. Однако общая масса, заключающаяся в атмосфере, очень большая — 2000—2500 млрд. т. В связи с развитием энергетики, промышленности и транспорта сжигается огромное количество угля н нефтепродуктов. Основным продуктом их окисления является СО2. Учеными установлено, что атмосферный СО2 обладает способностью задерживать, т. е. не пропускать в космическое пространство, тепловое излучение Земли ( парниковый эффект ). Чем больше СО2 в атмосфере, тем теплее климат Земли. Общее потепление климата может привести к катастрофическим последствиям. В результате потепления усилится таяние льдов на полюсах планеты и в горных районах, что приведет к повышению уровня Мирового океана и к затоплению огромных площадей суши. Подсчитано, что если расплавить все ледники Гренлан-дии и Антарктиды, то уровень океана поднимется почти на 60 м. Нетрудно догадаться, что тогда Санкт-Петербург и многие приморские города окажутся под водой. [c.10]

    Другой, недавно идентифицированный источник диоксида углерода связан с антропогенно обусловленными изменениями растительного и почвенного покрова континентов. Вырубка и выжигание лесов для вовлечения освобождаемых площадей в сельское хозяйство, а также распашка целинных земель и общая интенсификация земледелия, приводящая к более быстрому извлечению углерода из гумуса почв, - все это вместе взятое также внесло вклад в атмосферный резервуар СО2. В период 1860-1981 гг. сжигание ископаемого топлива дало выброс в 168 Рг С, а эмиссия вследствие изменения растительности континентов и необратимого нарушения почвенного покрова за это же время оценивается средней величиной 68 Гт С (Вагер и Турчанович, 1987). Считается, что вплоть до 1920-х гг. увеличение содержания СО2 в атмосфере определялось главным образом последними процессами, и только после этого времени лидирующее положение в его эмиссии заняли промышленные предприятия и транспорт. [c.88]

    Аминокислота -глутамин (9) является хранилищем и донором аминогрупп и одновременно средством транспорта аммиака внутри клетки. Синтез -глутамина из -глутаминовой кислоты (8) представляет собой второй основной путь фиксации аммиака в органических молекулах (схема 10). В третьей реакции фиксации аммиака из диоксида углерода, аммиака и АТР образуется карбамоилфосфат (10) (схема 11 Pi — неорганический фосфат) он является промежуточным соединением в синтезе мочевины и пиримидинов. [c.404]

    Массообмен в биологаческих системах связан не только с доставкой кислорода к клеткам аэробных видов и теплообменом, но и с выделением диоксида углерода как конечного продукта различных катализируемых реакций, транспортом других веществ через клеточные мембраны (в том числе — анаэробных организмов) [c.266]

    Переход транспорта, промышленности и бытовых потребителей на водород — это путь к радикальному решению проблемы охраны воздушного бассейна от отравлений, вызываемых оксидами углерода и азота от хронических отравлений, вызываемых оксидами серы, углеводородами, и от вековых накоплений в атмосфере диоксида углерода, откуда углерод уводится в энергетические тупики (залежи карбонатов). Переход на водородную тех-(юлогию не меняет не только водного баланса планеты, но и водного ба- [c.40]

    Хотя гемоглобин при высоком давлении кислорода почти так же хорошо связывает его, как и миоглобин, при низких давлениях он связывает Ог значительно хуже миоглобина и поэтому передает его миоглобину в мышцах, как это и нужно. Более того, потребность в кислороде будет наибольшей в тканях, которые уже использовали кислород и одновременно выработали СОа. Диоксид углерода понижает pH, а это еще больше увеличивает способность гемоглобина передавать кислород миоглобину. Влияние рЙ, так называемый эффект Бора, а также прогрессивное увеличение констант связывания кислоро да в гемоглобине обусловлены специфическими взаимодействиями между субъединицами. Миоглобин ведет себя проще, поскольку оц состоит только из одной субъединицы. Очевидно, что оба эти вещества необходимы для осуществления процесса транспорта. кислорода. Оксид углерода, РРз и некоторые, другие вещества токсичны, потому что они свя-зыва-ются с атомами железа гемоглобина прочнее, чем Ог. Они действуют как дон курентные ингибиторы. [c.642]

    Такие темпы дизелизации автомобильного транспорта обусловлены более низкой стоимостью дизельного топлива по сравнению с автомобильными бензинами, а также лучшей топливной экономичностью дизелей и меньшей токсичностью их отработавших газов (ОГ) по сравнению с бензиновыми двигателями. По данным фирмы АУТ (Австрия), при установке дизеля на легковой автомобиль среднего класса весом = 1 200 кг экономия топлива составляет АО = 35 % (при работе на режимах испытательного цикла КЕОС) по сравнению с бензиновым двигателем с распределенным впрыскиванием топлива во впускной трубопровод и = 18 % в сравнении с двигателем с непосредственным впрыскиванием бензина в цилиндры (рис. 1.14 а) [ 1.68]. Снижение расхода топлива при использовании дизеля на указанном автомобиле сопровождается одновременным уменьшением выброса с ОГ диоксида углерода соответственно на 26 и 14 % (см. рис. 1.14 а). По данным работы [1.67], замена бензиновых двигателей дизелями уменьшает эмиссию нормируемых газообразных продуктов неполного сгорания топ- [c.26]

    В разд. 5.9.8 уже говорилось, что обмен веществами между отдельными клетками и окружающей их средой может происходить пассивно, т. е. за счет процессов диффузии и осмоса, и с затратой энергии — путем активного транспорта, эндоцитоза и экзоцитоза. Внутри клетки вещества перемещаются в основном благодаря диффузии, однако и там известен энергозависимый транспорт, например с токами цитоплазмы. Эти способы переноса обеспечивают достаточную скорость и эффективность обмена на небольщих расстояниях, поэтому одноклеточные организмы и даже многоклеточные с высоким отнощением поверхности тела к его объему не нуждаются в особых транспортных системах. Например, у таких относительно мелких животных, как дождевые черви, обмен дьгхательных газов (кислорода и диоксида углерода) осуществляется путем их диффузии между окружающим воздухом и внутренними органами через наружные покровы тела. [c.97]

    Эритроциты содержат большое количество гемоглобина — переносящего кислород белкового пигмента, который и придает крови красный цвет. В клетках эритроцитов отсутствуют ядра. (В эритроцитах нет также митохондрий. Это не только высвобождает дополнительное место для гемоглобина, но и заставляет их дышать анаэробно, т. е. не потребляя кислород, который они переносят.) Гемоглобин обратимо связывает кислород (превращаясь в оксигемоглобин) в местах с высокой его концентрацией и отдает его в местах с низкой концентрацией. Эритроциты содержат также фермент карбоангидразу, участвующий в транспорте ими диоксида углерода (см. разд. 14.8.4). [c.144]

    Экологические проблемы загрязнения мегаполисов углеводородами и продуктами их сгорания ярко проявляются в Москве. Сегодня Москва и прилегающие окрестности — один из самых урбанизированных регионов мира. На площади в 0,3% от всей территории России проживает около 16 млн. человек (10% населения страны). Высокая плотность населения, насыщенность промышленными объектами и транспортом резко обостряют проблемы безопасности. Одним из главных виновников загрязнения является автомобильный транспорт. Ежегодный ущерб, наносимый автомобилями городу, оценивается в 150 млн. долларов США. За последние пять лет средняя концентрация оксида углерода в Москве увеличилась на 100%, оксида азота — на 50%, диоксида азота — на 37,7%, углеводородов бензиновой фракции — на 130%, формальдегида — на 26%, бенз(а)пирена — на 33,3%. За последние два года автопарк Москвы ежегодно увеличивался на 200-250 тыс. единиц. Сейчас он приближается к 2 млн. автомобилей. К 2005 г. по прогнозам автомобильный парк может достигнуть 3,3 млн., ак2010 — 4,1 млн. автомобилей. Валовое загрязнение окружающей среды (при сохранении сложившейся ситуации) может возрасти к 2005 г. в 1,6-1,8 раза, с 2010 г. — более чем в 2 раза. Увеличение количества автомобилей негативно сказывается не только на состоянии атмосферы, но и всей окружающей среды. [c.65]


Смотреть страницы где упоминается термин Транспорт диоксида углерода: [c.226]    [c.78]    [c.425]    [c.277]   
Смотреть главы в:

Биология Том2 Изд3 -> Транспорт диоксида углерода




ПОИСК





Смотрите так же термины и статьи:

Диоксид

Диоксид углерода



© 2025 chem21.info Реклама на сайте