Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование энергии света при фотосинтезе

    В АТФ энергия запасена в связях Р—О—Р последовательный гидролиз трифосфата и дифосфата приводит к выделению 77 кДж/моль. АТФ образуется не только при фотосинтезе, в митохондриях клеток его синтез является результатом запасания энергии, образовавшейся в процессе окисления органически связанного углерода, т. е. в процессе дыхания. Однако интенсивность образования АТФ у фотосинтезирующих организмов при использовании энергии света в десятки раз превосходит интенсивность появления АТФ в результате окислительного фосфорилирования. [c.33]


    Было показано, что в посевах с наиболее благоприятной структурой может поглощаться до 50% падающей световой энергии. Так как не вся поглощенная энергия используется в процессе фотосинтеза (известно, что при повышенных освещенностях квантовые расходы фотосинтеза увеличиваются с 8 до больших значений), то коэффициент полезного использования энергии света в среднем за вегетационный период составляет для таких посевов около 5%. В этом случае урожаи (теоретические, [c.284]

    ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ СВЕТА ПРИ ФОТОСИНТЕЗЕ [c.151]

    Фотосинтез — это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений. Главную роль в этом процессе играет использование энергии света для восстановления Oj до уровня углеводов. Однако в процессе фотосинтеза могут восстанавливаться сульфат или нитрат, образовываться Hj энергия света расходуется также на транспорт веществ через мембраны и на другие процессы. Поэтому часто говорят [c.59]

    Клеточный механизм фотосинтеза в ходе эволюции сформировался у одноклеточных организмов (у бактерий), причем цитохромы начали принимать участие в транспорте электронов, по-видимому, уже у первичных гетеротрофов. Как следует из приведенной схемы, сначала возник механизм циклического фотофосфорилирования (ФС I), а затем у цианобактерий -молекулярный комплекс нециклического фотофосфорилирования (ФС I -Ь ФС II). Пентозофосфатный цикл окисления глюкозы также существовал у первичных гетеротрофов. Его обращение с использованием энергии света стало основным способом восстановления СО2 у растений (цикл Кальвина). [c.121]

    Раньше под фотосинтезом понимали процесс образования сахара из углекислоты и воды с использованием энергии света. Однако развитие исследований в этой [c.116]

    Установлено, что бор, марганец, цинк и медь повышают коэффициент полезного использования лучистой энергии света при фотосинтезе, стимулируют окислительно-восстановительные реакции, имеющие большое биологическое значение. [c.423]

    Коэффициент использования энергии солнечного света при фотосинтезе невелик (в среднем порядка 2%). [c.575]

    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]


    Зеленые растения могут синтезировать углеводы из диоксида углерода и воды при участии хлорофилла и с использованием энергии солнечного света (фотосинтез)  [c.701]

    Как известно, от интенсивности лучистой энергии зависит эф фект фотосинтеза кальциферола Отсюда возникает задача максимального использования энергии источника света для целей фото синтеза Это может быть достигнуто применением рефлекторов [c.247]

    Из щелочно-земельных металлов в биологических системах повсеместно распространены магний и кальций. Многие эфиры и ангидриды фосфорной кислоты функционируют в виде магниевых солей. Концентрация ионов магния в клетках имеет исключительно важное значение для поддержания целостности и функционирования рибосом, т.е. для синтеза белков. Кроме того, магний входит в состав хлорофилла — основного пигмента зеленых растений, непосредственно поглощающего кванты видимого света для использования их энергии при фотосинтезе. Ионы кальция принимают участие в регуляции ряда важных клеточных процессов, в том числе мышечного сокращения и других двигательных функций. Кроме того, нерастворимые соли кальция участвуют в формировании опорных структур фосфат кальция — в формировании костей, карбонат кальция — в образовании раковин моллюсков. [c.65]

    Число примеров возможных, но пока неосуществленных каталитических реакций можно было бы увеличивать до бесконечности. То, что во многих, а может быть даже в большинстве случаев реакции, разрешенные термодинамически, в принципе поддаются реализации с помощью катализаторов, показывает биокатализ. В любой живой клетке происходят сотни и тысячи тончайших каталитических процессов, поражающих своей слаженностью и совершенством. При этом в клетке исключается использование основных методов форсирования химических реакций с помощью повышения температуры и давления или применения необычных растворителей. При комнатных и даже несколько более низких температурах в растениях совершается каталитический фотосинтез углеводородов и тесно с ним связанные термические каталитические синтезы всей остальной широчайшей гаммы веществ, требующихся для жизнедеятельности организма. Высшие растения, прекрасно ассимилирующие углерод из СО2, неспособны усваивать азот воздуха но существуют микроорганизмы (бактерии, грибки), которые осуществляют эти реакции без прямого участия энергии света. Продукты таких первичных каталитических синтезов у микроорганизмов далее также каталитическим путем превращаются в аминокислоты и азотные основания, из которых построены белки и нуклеиновые кислоты, а также различные другие азотные соединения живой клетки (алкалоиды и т. д.). Существуют бактерии, способные осуществлять каталитически весь комплекс биохимических процессов, в том числе синтез аминокислот,. [c.9]

    Проводя спектроскопические исследования и изучая флуоресценцию пигментов, пытаются определить состояние пигментов в пластидах, характер участия пигментов в поглощении, трансформировании, использовании и передаче энергии света изучая кинетику фотосинтеза в зависимости от изменяющихся концентраций двуокиси углерода, пытаются выяснить природу начальной реакции вхождения СОд в цикл фотосинтетических превращений (карбоксилирование, фиксация на [c.5]

    Получаемые теоретические выводы должны быть использованы для воспроизведения вне клетки некоторых простых фотореакций, сходных с реакцией фотосинтеза и представляющих практическую ценность для проблемы химического использования энергии солнечного света. С другой стороны, [c.361]

    Пища нужна всем живым существам. Она служит им источником энергии и веществ, необходимых для роста и других процессов жизнедеятельности. Живые организмы используют только два вида энергии — это энергия солнечного света и энергия химических связей. Организмы, специализированные для использования световой энергии, осуществляют фотосинтез и содержат пигменты, в том числе хлорофилл, способные поглощать свет. К таким организмам относятся растения, водоросли и некоторые наиболее простые организмы, включая бактерии. Организмы, не способные к фотосинтезу, должны получать химическую энергию (т. е. энергию, запасенную в химических [c.10]

    Интенсификация фотосинтетической деятельности растений в посевах. Фотосинтез — это процесс поглощения и трансформации энергии света в химический потенциал богатых энергией органических соединений в виде углеводов, жиров, белков. Из определения следует, что в практических целях важно повышать КПД использования солнечной энергии растениями. [c.365]

    Наиболее совершенным выражением способности живого организма создавать органическое вещество с использованием электромагнитной энергии света является фотосинтез зеленых растений, в дальнейшем для краткости именуемый просто фотосинтезом. [c.98]


    Для преодоления других, обосновавшихся в учении о фотосинтезе неправильных представлений, также понадобилась напряженная работа коллективов ученых различных стран. Успеху исследований способствовало широкое использование великих завоеваний физики и химии нашего времени и созданных на основе этих успехов новых, высокоэффективных методов исследования. В числе этих методов спектрометрия, включая импульсную, дифференциальную, а также флуоресцентную спектрофотомет-рию, электрометрия, включая и измерения фотопроводимости, магнитные измерения, меченые атомы, дифференциальное центрифугирование, электронная, фазово-контрастная микроскопия и др. Полученные в ходе исследований материалы легли в основу современных представлений о фотосинтезе как о сенсибилизируемой хлорофиллом системе сопряженных окислительно-восстановительных реакций. Специфика фотосинтеза состоит в том, что в ходе этого процесса имеет место превращение электромагнитной энергии света в энергию химических связей конечных фотопродуктов. [c.145]

    Эти цифры убедительно показывают, насколько фактическое использование растением энергии света ниже оптимальной величины квантового выхода фотосинтеза. Тем самым подчеркивается существование больших возможностей для дальнейшего увеличения эффективности использования зеленым растением света. [c.183]

    Американские ученые Эмерсон и Льюис установили, что-квантовый выход фотосинтеза хлореллы (т. е. количество молекул СОг, которые реагируют на квант поглощенного света при фотосинтезе) начинает падать около 680 нм и достигает нуля около 700 нм, хотя полоса поглощения хлорофилла а кончается лишь около 820 нм. Одиако низкий квантовый выход фотосинтеза в области красного падения можио увеличить и даже довести до нормального уровня одновременным освещением светом более короткой длины волны. Это явление назвали эффектом Эмерсона. Спектр действия данного эффекта параллелен кривой, которая показывает долю поглощения света, приходившуюся в хлорелле на хлорофилл Ь, у диатомовых водорослей— на фукоксантин и хлорофилл с, а у красных и сине-зеленых водорослей — на фикобилины. Очевидно, фотосинтез требует одновременного возбуждения хлорофилла и одного из вспомогательных пигментов. Световая энергия, поглощенная пигментами-спутниками, передается резонансно на хлорофилл а, и эффективность этого переноса определяет также действенность света, поглощенного вспомогательным пигментом, сенсибилизирующим фотосинтез. Таким образом, для эффективного использования световой энергии в фотосинтезе, кроме хлорофилла а, должен активироваться еще и вспомогательный пигмент—хлорофилл Ь, а также фикобилины, каротиноиды. [c.183]

    Гайических веществ клетки, диссимиляция (катаболиче-ские процессы, которые являются экзергоническими). Различают две основные формы диссимиляции — дыхание и брожение. Процессы образования-биологических соединений и веществ, поступающих из внешней среды,— биосинтетические процессы (анаболические) идут с затратой энергии (эндергонические), т. е. представляют собой ассимиляцию. Важнейший биосинтетический процесс — ассимиляция углерода зелеными растениями и бактериями путем использования энергии света (фотосинтез) или энергии других химических реакций (хемосинтез). [c.174]

    Для перехода к использованию энергии света необходимо было создание фоторецепторных молекул и подключение части из них к имеющимся электронтранспортным цепям. Такие фоторецепторы — М -порфирины — были сформированы. Фотосинтез начался, видимо, с создания системы фотоиндуцированного циклического электронного транспорта и служил сначала в качестве [c.354]

    Для получения высокого квантового выхода необходимы оптимальные условия работы фотосинтетического аппарата (температура, концентрация СО2 и т. д.). Кроме того, определения следует проводить при освещенно-"стях, соответствующих начальному линейному участку световой кривой, где скорость темновых реакций еще не становится фактором, лимитирующим фотосинтез. При световом насыщении фотосинтеза энергия части поглощенных квантов не будет использоваться на восстановление углекислого газа, в связи с чем квантовый выход фотосинтеза сильно уменьшится. В естественных условиях величина квантового выхода равна приблизительно 0,01, что соответствует эффективности использования энергии света, равной 2,5%. Самый высокий квантовый выход, по-видимому, соответствует 7—10 квантам света на одну молекулу восстанавливаемой СО2. Получены и большие величины квантового выхода, но это требует подтверждения. [c.112]

    Жизнь за счет анаэробных превращений органических субстратов привела к возникновению а н а 3 р о б н о й формы жизни за счет света. Для этого прежде всего должны были возникнуть окрашенные молекулы, поглощающие кванты света. Когда сформировались структуры для улавливания света, появилась возможность жизни за счет использования световой энергии. В конечном итоге это создало предпосылки для возникновения жизни в том виде, в каком она существует сейчас. То, как эти возможности реализовывались, доказывает наличие нескольких типов фотосинтеза, осуществляемого разными группами прокариот, энергетический метаболизм которых полностью или частично основан на использовании энергии света. Фотосинтезирующие прокариотные организмы представлены пурпурными и зелеными бактериями, большой группой цианобактерий недавно обнаруженными организмами, названными прохлорофитами, и гало-бактериями. [c.225]

    Для перехода к использованию энергии света необходимо было создание фоторецепторных молекул и подключение части из них к имеющимся электронтранспортным цепям. Такие фоторецепторы — Mg-порфирины — были сформированы вероятно, они возникли из Fe-порфиринов (цитохромов) в результате модификации пути их синтеза. Фотосинтез начался, видимо, с создания системы фотоиндуцированного циклического электронного транспорта и служил сначала в качестве источника энергии, дополнительного к основному, которым являлись процессы брожения. Восстановитель первичные фотосинтезирующие прокарирты могли получать теми же путями, что и бродиль- [c.316]

    Учитывая новейшие открытия биоэнергетиков, под фотосинтезом надо понимать не только синтез сахаров, но также и любое другое использование энергии света для целей энергообеспечения живой клетки. [c.117]

    Для растения в целом эффективность использования энергии света (т. е. его фотосинтетическая эффективность) существенно ниже, чем на молекулярном уровне. Все факторы, чье совместное действие снижает эффективность фотосинтеза, молено объединить в основном в две группы. Во-первых, это факторы, ограничивающие эффективное поглощение света, во-вторых, факторы, связанные с дисоипацней энергии, которая могла бы быть использована для фотосинтеза. [c.45]

    Фотосинтез — это сложный многоступепчатьгй окислительно-восстановительный процесс, в котором происходит восстановление углекислого газа до уровня углеводов и окислепие воды до кислорода. Фотосиитез включает как световые, так и темповые реакции. Выл проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят реакции, не требующие света (темиовые). 1. Фотосинтез ускоряется с повьппением темиератзфы. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно ве связаны с использованием энергии света. Особенно резко зависимость фотосинтеза От температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями. 2. Эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. Для более эффективного использования энергии света длительность темповых промежутков должна значительно превышать длительность световых. [c.124]

    Хорошо известно, что АТФ как богатый энергией фосфат используется во многих биохимических процессах. Запасание химической энергии следует из возможности гидролиза АТФ до АДФ и Н3РО4 (около 25 кДж/моль). Поскольку реакция (8.46) может происходить независимо от восстановления СО2 в анаэробных условиях, представляется возможным первоначальное развитие организмов в направлении использования ими света для запасания энергии, а не для синтеза новых органических соединений. Возникновение собственно фотосинтеза было, таким образом, более поздним эволюционным этапом. [c.230]

    История изучения фотосинтеза начинается с 1881 г., когда Ю.Л. Мейер доказал, что фотосинтез протекает в структурах листьев растений - хлоро-пластах. В 20-х годах XX в. К.А. Тимирязев исследовал роль специальных структур - пигментов, называемых хлорофиллами, в поглощении солнечного света (особенно красного и синего) и использовании световой энергии в фотосинтезе. В 1937 г. Р. Хилл открыл фотолиз воды, или фотохимическое окисление воды и образование кислорода, а в 50-х годах М. Калвин с сотрудниками изучили так называемую темновую стадию, во время которой образуются органические вещества. Фотосинтез протекает в хлоропла-стах, которые содержат все необходимое для синтеза органических соединений фоточувствительные пигменты, переносчики электронов, ферменты, коферменты, различные органические соединения, используемые в ходе биосинтеза на темновой стадии. Световая стадия фотосинтеза показана на рис. 39 и может быть описана суммарным уравнением  [c.92]

    По-видимому, следует говорить не о реакции или даже процессе фотосинтеза, а о фотосинтетической функции растений, подчеркивая этим сложность и многообразие процессов, которые могут осуществляться с помощью энергии света, поглощенного пигментами фотосинтетиче-ского аппарата. В общем виде фотосинтетическая функция — это совокупность процессов поглощения, превращения и использования в различных эндергонических реакциях энергии световых квантов. [c.3]

    Не останавливаясь подробно на световой фазе фотосинтеза [64], исследованной, главным образом, Кэлвиным и др., следует упомянуть, что важнейшими процессами здесь являются поглощение хлорофиллом квантов света и использование их энергии для синтеза богатых энергий пирофосфатных связей (АТФ, НАДФ-Н2) поглощаемая энергия света используется при разложении воды, кислород которой выделяется в виде О 2 как конечный продукт фотосинтеза, а водород используется для восстановления при участии АТФ и НАДФ-Н фосфоглицериновой кислоты на второй, темновой стадии фотосинтеза. [c.204]

    Важную группу растительных хромопротеинов составляют хлорофиллпротеины. В отличие от железопорфиринов животных в растениях содержатся магний(П)порфириновые комплексы, придающие листьям характерную зеленую окраску. Порфириновое кольцо хлорофилла — феофи-тин представлено дигидропорфирином, содержащим остаток спирта фитола. В растениях хлорофиллы в составе сложного белково-липидного комплекса присоединяют два дополнительных лиганда, одним из которых являются аминокислотные радикалы пептидных фрагментов белка, другим — молекула воды. Координация молекулы воды способствует ее окислению с использованием энергии квантов света, в результате чего происходит передача электрона по сложной цепи фотосинте-тического аппарата от восстановителей к окислителям в процессе фотосинтеза (см. главу 13). [c.91]

    Пути миграции энергии возбуждения. Доставка энергии электронного возбуждения к РЦ фотосистем I и П высших растений и РЦ бактериального фотосинтеза осуществляется за счет миграции энергии в светособирающей антенне. Миграция энергии в фотосинтезе — наиболее изученный тип безизлучательного переноса энергии электронного возбуждения в биологических системах (см. 9-11, гл. ХП1). Ее функциональное биологическое значение состоит в повышении эффективности использования поглощенных световых квантов. Действительно, среднее время, необходимое для утилизации энергии кванта света (выделение молекулы О2), соста- [c.290]

    По всей вероятности, одной из первых реакций с использованием солнечного света было фосфорилирование нуклеотидов с образованием АТР - богатого энергией соединения. Другой важный этап в ходе эволюпии - создание восстановительной силы (восстановительных эквивалентов). Дело в том, что атомы азота и углерода в СО2 и N2 атмосферы находятся в инертном окисленном состоянии, и один из путей сделать их более реакционноспособными, с тем чтобы они могли участвовать в биосинтезе, - это восстановить их, т.е. передать им электроны. Восстановление идет следующим образом. Хлорофилл, используя энергию солнечного света, отбирает электроны у слабых доноров электронов и переносит их на сильные доноры электронов, которые в свою очередь используются для восстановления СО2 и N2. Анализ механизмов фотосинтеза у современных бактерий позволяет сделать вывод о том. что одним из первых источников электронов был Н28. конечным продуктом обмена (метаболическим отходом) которого должна была быть элементарная сера. Значительно позже развился куда более сложный, но, как оказалось, более полезный процесс извлечения электронов из Н2О. В результате в качестве отхода в земной атмосфере начал накапливаться кислород. [c.26]

    В среднем КПД фотосинтеза сельскохозяйственны, растении составляет 0,5—1%, а теоретически возможный — 4—6%. Максимальный показатель использования энергии ФАР посевами и насаждениями обусловливается способностью поглощать не менее 60% энергии света, поступающего к ним па протяжеш-ш вегетации. Из этого количества на фотосинтез идет 10%, на дыхание расходуется около 20% энергии, усваивающейся в процессе фотосинтеза, или [c.228]


Смотреть страницы где упоминается термин Использование энергии света при фотосинтезе: [c.263]    [c.274]    [c.59]    [c.33]    [c.622]    [c.22]    [c.219]    [c.163]    [c.182]    [c.377]    [c.119]   
Смотреть главы в:

Курс физиологии растений Издание 3 -> Использование энергии света при фотосинтезе




ПОИСК





Смотрите так же термины и статьи:

Использование энергии АТР

Фотосинтез

Энергия света



© 2025 chem21.info Реклама на сайте