Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение водорода хлорофиллом

    Фотохимическое восстановление хлорофилла, его аналогов и производных органическими восстановителями (аскорбиновой кислотой, цистеином и др.) с образованием продуктов, имеющих повышенную энергию за счет поглощенных квантов света, обнаружил А. А. Красновский [1349] спектральным путем и по изменению окислительно-восстановительного потенциала. В темноте происходит без участия кислорода обратный процесс окисления, возвращающий систему в теормодинамически устойчивое состояние. А. А. Красновский предполагает, что фотовосстановление хлорофилла происходит путем перехода на его бирадикал - X электрона от восстановителя НА, после чего последний уже без участия света передает протон окислителю В. Аналогично должны проходить первые стадии фотосинтеза в растениях, где НА — вода или первичные продукты ее восстановления и В — восстанавливающаяся Og или первичные продукты ее фиксации. Таким образом, перенос водорода совершается двумя сопряженными процессами переносом электрона к хлорофиллу и переносом протона к нему же или, что более вероятно, непосредственно к дальнейшим промежуточным продуктам цепи реакций, ведущих к восстановлению СОо. Упрощенная схема участия хлорофилла в фотосинтезе согласно этим представлениям имеет вид  [c.476]


    А. П. Теренин [1347] и затем Льюис и Каша [1348] объяснили сенсибилизирующее действие пигментов превращением их в промежуточное мета-стабильное бирадикальное состояние при поглощении кванта света. Такой бирадикал, образованный размыканием электронной пары, может сенсибилизировать реакции переноса водорода и кислорода, участвуя в их промежуточных стадиях. По А. Н. Теренину и А. А. Красновскому [1349], при фотосинтезе водород обратимо переносится бирадикалом хлорофилла от воды к окислительно-восстановительным системам (например, к окисленным формам дегидраз), восстановленные формы которых включаются в темповые реакции фотосинтеза. Есть основания предполагать участие в сенсибилизации хлорофиллом фоторазложения воды каротиноидов в качестве переносчиков кислорода с промежуточным образованием перекисей. Однако попытки обнаружить внедрение О в ксантофилл при выращивании водорослей в HgO не увенчались успехом [1350]. [c.476]

    На первой стадии гидрирования порфирины насыщают водородом одну Ср—Ср-связь и превращаются в хлорины. Для хлоринов в отличие от ЭСП порфиринов с относительно слабым поглощением квантов света в красной части спектра характерна интенсивная полоса в области 660—720 нм. Именно с этим свойством связано то, что хлорофилл (а) зеленых растений является хлорином, а не порфином. Его хлориновая структура обеспечивает предельно сильное поглощение света в красной части видимого спектра и обеспечивает фотосинтез энергией Солнца даже в самых неблагоприятных природных условиях. [c.688]

    Одним из наиболее обоснованных доказательств особого состояния пигментов в живой клетке является расхождение их оптических свойств со свойствами раствора тех же пигментов. Максимум поглощения света хлорофиллом и другими пигментами в живой клетке сильно смещен в длинноволновую область по сравнению с максимумом поглощения его пигментами, находящимися в растворе. Установлено, что фотохимическая активность хлорофилла в растворе изменяется параллельно со способностями к флуоресценции, максимальное проявление которой, как правило, указывает на мономолекулярную дисперсность. В листе хлорофилл частично находится во флуоресцирующей моиомолекулярной форме. Менее прочно связан с белками хлорофилл молодых листьев. Установлена также способность белков хлоропластов связывать хлорофилл тем больше, чем выше степень их восстановленности. Экспериментально доказано, что восстановление белковых препаратов водородом приводило к повышению их способности связывать хлорофилл. [c.173]


    Следует также сказать несколько слов относительно влияния растворенных газов на спектр поглощения растворов хлорофилла. Падоа и Вита [82] описывают изменения в спектрах поглощения растворов хлорофиллов а и в бензоле при насыщении растворов азотом, кислородом, окисью углерода и углекислотой. Сильное изменение спектра наблюдалось под действием СО. Авторы рассматривают это как указание на существование комплекса хлорофилл — окись углерода, подобного карбоксигемоглобину. Однако спектры, представленные в работе Падоа и Вита, так сильно отличаются от настоящего спектра хлорофилла, что они принадлежат скорее каким-то продуктам разложения, чем нормальному пигменту. Катц и Вассинк [89] получили практически идентичные кривые экстинкции для коллоидных водных экстрактов бактериохлорофилла в атмосфере кислорода, сероводорода, азота, водорода и воздуха. [c.56]

    Спектроскопические исследования показывают, что фотосинтез — это сложный процесс, включающий кооперативные взаимодействия многих молекул хлорофилла. Мотивы упаковки соседних молекул хлорофилла исследовались методами рентгеноструктурного анализа и ядерного магнитного резонанса (ЯМР) на ядрах водорода и С. Исследования, проведенные методом электронного парамагнитного резонанса, показали, что сразу после поглощения света (в течение наносекунды) электрон быстро вылетает из молекулы хлорофилла или переносится из нее. В результате остается неподеленный электрон, общий для двух молекул хлорофилла. Это наблюдение привело к мысли о том, что центром фотореакции является пара параллельных хлорофилловых колец, удерживаемых на близком расстоянии друг от друга водородными связями между аминокислотными группами. [c.72]

    Было замечено, что спектры поглощения раствора железосодержащих белков цитохрома с и гемоглобина в. жидком фтористом водороде и в воде похожи друг на друга. Установление этого факта способствовало изучению свойств других координационных соединений металлов в жидком фтористом водороде. Способность комплексов металлов противостоять действию фтористого водорода, по-видимому, характерна для фталоцианинов металлов, аминов кобаль-та(1П) и многих других координационных соединений, растворяющихся без разрушения комплжса. Особый интерес представляют биологически важные координационные соединения металлов — хлорофилл и витамин В 5 3. Спектры поглощения растворов хлорофилла в жидком фтористом водороде аналогичны его спектрам в более обычных растворителях. Раствор витамина В з в жидком НГ имеет яркий оливково-зеленый цвет, а цвет самого витамина В з ярко-красный. Витамин В а, представляющий собой координационное соединение кобальта(П1), пе разрушается при растворении в жидком фтористом водороде, несмотря на сложную структуру и наличие многочисленных функциональных групп. Он может быть легко выделен из раствора Н Г и при этом не теряет своих свойств. [c.77]

    В клетках растений обязательно в присутствии хлорофилла, играющего роль катализатора, углекислый газ взаимодействует с водородом воды и другими элементами, образуются сложные органические вещества — белки, углеводы и жиры. Этот процесс требует затраты энергии и происходит только при поглощении энергии солнечного света. Поэтому он называется фотосинтезом (стр. 392).  [c.213]

    ФОТОСИНТЕЗ. Процесс образования органических соединений из неорганических веществ — углекислого газа и воды. В процессе Ф. создается до 90% сухого вещества растений. В химическом отношении этот процесс взаимодействия углекислого газа и воды, который идет при участии хлорофилла, поглощающего энергию солнечных лучей. Поглощенная хлорофиллом световая энергия используется для осуществления реакции, при которой водород воды восстанавливает углекислый газ  [c.329]

    В зеленых частях растений углекислота, поглощенная листьями из воздуха, перерабатывается в органические вещества — углеводы, белки, жиры и др. Процесс образования их зелеными растениями из углекислого газа и воды при участии энергии солнечного света называется фотосинтезом. Химизм фотосинтеза углеводов можно представить следующим образом. Энергия солнечного света, передаваемая в виде фотонов или квантов, поглощается зелеными частями растений, содержащими хлорофилл. При этом электроны хлорофилла возбуждаются и отдают усвоенную энергию соединениям фосфата с адениловой кислотой, то есть аденозиндифосфату (АДФ), образуя аденозинтрифосфат (АТФ). Для фотосинтеза необходимы также ионы водорода (протоны), источником которых служит вода. [c.10]

    Хлорофилла в растениях около 1 % от массы сухого вещества. Он содержится в хлорофилловых зернах, или хлоропласт а х, участвует в сложной цепи окислительно-восстановитель-ных реакций и фотохимических процессов, происходящих при фотосинтезе. Световая энергия, поглощенная хлорофиллом, расходуется на фотохимическую реакцию, при которой водород воды восстанавливает углекислый газ до органических соединений. По одной из теорий первым продуктом фотосинтеза является ка- [c.397]


    Дополнительный аргумент в пользу окислительно-восстановительной гипотезы [реакция (16.9)] дает действие света на реакцию между хлорофиллом и хлорным железом, что будет рассматриваться в главе ХУШ. Реакция окисления хлорофилла должна, вероятно, ускоряться при поглощении света, тогда как влияние освещения на равновесие алломеризации (см. формулу на стр. 464) гораздо менее вероятно. Ввиду важности окончательного доказательства обратимого окисления хлорофилла для объяснения роли этого пигмента в фотосинтезе, реакция хлорофилла с хлорным железом, безусловно, заслуживает дальнейшего изучения. Необходимо доказать, например, что эта реакция оставляет нетронутым магний в молекуле хлорофилла и не вызывает замещения этого металла на железо или водород .  [c.471]

    Высшие растения способны непосредственно использовать солнечную энергию. Она поглощается хлорофиллом и используется для разложения в листьях воды (поступившей из почвы через корни) на кислород и водород. Кислород выделяется наружу, а водород вступает в восстановленные соединения, которые присоединяют к себе СОа, поглощенный из воздуха, с образованием органических веществ типа углеводов. [c.16]

    А. А. Красновским в 1949 г. была показана правильность тимирязевской концепции о более сложной роли хлорофилла при фотосенсибилизации, не укладывающейся в упрощенную картину физического переноса энергии возбуждения. Обнаружилось, что в определенных условиях жидкой среды растворенный хлорофилл при освещении красным светом, и только при освещении, способен отнимать водород от более податливых доноров водорода, чем вода, а именно типичных органических и неорганических восстановителей. Измененный хлорофилл, присоединивший водород, имеет розовый цвет в отличие от нормального зеленого и соответствующий измененный спектр поглощения, а также спектр флуоресценции (рис. 6) [10]. Эта измененная форма хлорофилла существует только при условии тщательного удаления воздуха. Достаточно впустить кислород, являющийся мощным акцептором лабильного водорода, как регенерирует хлорофилл со своей обычной окраской.  [c.384]

Рис. 6. Спектр поглощения продукта фотореакции присоединения водорода от аскорбиновой кислоты к хлорофиллу. Рис. 6. <a href="/info/1210879">Спектр поглощения продукта</a> фотореакции <a href="/info/31848">присоединения водорода</a> от <a href="/info/7746">аскорбиновой кислоты</a> к хлорофиллу.
    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    Хромопротеины являются непременными и активными участниками аккумулирования энергии, начиная от фиксации солнечной энергии в зеленых растениях и утилизации ее до превращений в организме животных и человека. Хлорофилл (магнийпорфирин) вместе с белком обеспечивает фотосинтетическую активность растений, катализируя расщепление молекулы воды на водород и кислород (поглощением солнечной энергии). Гемопротеины (железопорфирины), напротив, катализируют обратную реакцию — образование молекулы воды, связанное с освобождением энергии. [c.78]

    Поглощая энергию кванта света, хлорофилл (зеленое красящее вещество растений) или хлоропласты (комплексные структуры) переходят в возбужденное состояние, причем поглощение хлорофилла обусловлено возбуждением л-электронов порфиринового ядра (с. 543). Пэглощенная энергия расходуется на фотохимическое разложение воды до кислорода и водорода, восстанавливающего далее при участии ферментов З-фосфат-О-глицериновой кислоты (III) в фосфат глицеринового альдегида (IV) и изомерный ему фосфат диоксиацетона (IVa). Катализируемая ферментами взаимная конденсация фосфатов триоз (IV и IVa) приводит к 1,6-дифосфату фруктозы (V), предшественнику полисахаридов (крахмала, целлюлозы), причем примерно часть фосфатов глицеринового альдегида (IV) и диокси-ацетона (IVa) превращается в 1,6-дифосфат D-фруктозы, а Vg частей в результате реакций конденсации, перегруппировок и фосфорилирр-вания превращаются в рибулозодифосфаг (I), снова начинающий цикл ассимиляции СО2, и таким образом возвращаются в ц-икл фото- [c.217]

    Хлорофилла в растениях около 1% от массы сухого вещества. Он содержится в хлорофилловых зернах, или хлоропластах, участвует в сложной цепи окислительно-восстановительных реакций и фотохимический процессов, происходящих при фотосинтезе. Световая энергия, поглощенная хлорофиллом, расходуется на фотохимическую реакцию, при которой водород воды восс ганавливает углекислый таз до органических соединений. По одной из теорий первым продуктом фотосинтеза являетея какое-то двууглеродное (содержащее два атома углерода) соединение, обозначаемое С2. Из него образуется сначала фосфоглицериновая кислота, а затем углеводы. Изучение промежуточных продуктов с помощью меченых атомов привело к следующей схеме процессов фотосинтеза  [c.394]

    Положение максимумов поглощения в спектре видимого света и относительная величина поглощения могут изменяться в зависимости от природы заместителей р-атомов водорода в пиррольных кольцах, степени восстановленности отдельных пиррольных колец. На спектры поглощения оказывают влияние также природа растворителя, с помощью которого извлекался хлорофилл, а также (invivo) особенности взаимодействия молекулы пигмента с окружающими молекулами пигментов, белков и липидов. [c.36]

    Способность молекул хлорофилла к обратимым фотопревращениям, и в частности к обратимому фото во с становлению, доказана работами А.А.Красновского, В.Б.Евстигнеева с сотрудниками. В модельных опытах с растворами хлорофилла А.А.Красновский(194В) впервые установил способность хлорофилла при кратковременном освещении красным светом к обратимому фотовЬсстановлению в присутствии аскорбиновой кислоты в качестве донора электрона (водорода) и при наличии в среде пиридина, стабилизирующего богатые энергией фотопродукты. В этой реакции ("реакция Краснов-ского") получается восстановленный хлорофилл красного цвета с максимумом поглощения в 525 нм. Реакция эта обратила, и в темноте после выключения света восстановленный хлорофилл (красная форма его) переходит в зеленый хлорофилл. Обратная реакция ускоряется в присутствии кислорода или других окислителей. [c.127]

    Не все стадии в процессе фотосинтеза являются выясненными и строго доказанными. Однако несомненно, что возбужденный светом хлорофилл является донором электронов, восстанавливая при участии атомов водорода из воды НАДФ до НАДФ-Нг, и, с другой стороны,— акцептором электронов, которые от ОН-ионов воды через цитохром возвращаются на хлорофилл или расходуются на образование АТФ. В то время как первичные фотофизические процессы при фотосинтезе заключаются в поглощении и переносе энергии квантов света, первичные фотохимические процессы заключаются прежде всего в образовании трех веществ молекулярного кислорода, восстановленного НАД или НАДФ и АТФ. Именно в реакциях [c.338]

    Не останавливаясь подробно на световой фазе фотосинтеза [64], исследованной, главным образом, Кэлвиным и др., следует упомянуть, что важнейшими процессами здесь являются поглощение хлорофиллом квантов света и использование их энергии для синтеза богатых энергий пирофосфатных связей (АТФ, НАДФ-Н2) поглощаемая энергия света используется при разложении воды, кислород которой выделяется в виде О 2 как конечный продукт фотосинтеза, а водород используется для восстановления при участии АТФ и НАДФ-Н фосфоглицериновой кислоты на второй, темновой стадии фотосинтеза. [c.204]

    Ассимиляция двуокиси углерода является эндотермической реакцией (точнее эндоэргической, см. рис. 76, стр. 195). На превращение 1 моля двуокиси углерода в эквивалентное количество глюкозы расходуется примерно 114 ккал. Источником необходимой энергии является солнечное излучение. Эта фотохимическая реакция происходит под влиянием хлорофилла — органического вещества зеленого цвета со сложной структурой, в состав которого входит магний. Хлорофилл является не катализатором, а фотохимическим сенсибилизатором, который превращает поглощенную лучистую энергию в энергию, используемую в химической реакции. Квант света в спектральной области, в которой поглощает хлорофилл (желтой), обладает энергией 35— 40 ккал (см. стр. 102). Для восстановления 1 моля СО2 необходимо четыре кванта света. Энергия, отданная хлорофиллом, используется для разложения воды на свободные атомы кислорода и водорода. Атомы кислорода образуют молекулы кислорода, которые выделяются, тогда как атомы водорода участвуют в химических реакциях, восстанавливая определенные продукты реакции. В синтезах (известных благодаря работам М. Калвина, 1947—1955) важную роль играет фосфорная кислота, связанная с различными органическими веществами (см. учебники органической химии). [c.489]

    В работах нашей лаборатории было впервые установлено, что хлорофилл и его аналоги восстанавливаются аскорбиновой кислотой и рядом других соединений (диоксималеиновой кислотой, цистеи-ном, сероводородом, фенилгидразином) при освещении в полосе поглощения этих пигментов красным светом [17—19]. При этом образуется лабильный фотопродукт розового цвета с характерным максимумом поглощения у 525 нм (рис. 6). Из этого продукта под окисляющим действием кислорода или других органических окислителей обратимо регенерирует хлорофилл, что прослеживалось нами спектрально. Очевидно, мы имеем здесь неустойчивый промежуточный продукт фотовосстановления, представляющий собой, по-видимому, полувосстановленную форму пигмента, присоединившего либо один электрон без протона или же вместе с протоном, т. е. один атом водорода. Действительно, эта реакция фотовосстановления не сопровождается полным гидрированием изолированной двойной связи хлорофилла двумя атомами П, так как здесь не наблюдается образования продукта такого гидрирования, [c.368]


Смотреть страницы где упоминается термин Поглощение водорода хлорофиллом: [c.143]    [c.214]    [c.545]    [c.460]    [c.463]    [c.39]    [c.48]    [c.296]    [c.333]    [c.16]    [c.52]    [c.264]    [c.181]    [c.1413]    [c.1413]    [c.303]    [c.94]    [c.476]    [c.165]    [c.159]    [c.181]    [c.368]   
Фотосинтез 1951 (1951) -- [ c.49 , c.303 , c.466 , c.467 , c.503 , c.504 ]




ПОИСК





Смотрите так же термины и статьи:

Водород поглощение

Хлорофилл

Хлорофилл хлорофилл



© 2024 chem21.info Реклама на сайте