Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пример предсказания структуры

    Ниже приведены примеры предсказания структур некоторых комплексов с позиций метода валентных связей. [c.376]

    ПРИМЕР ПРЕДСКАЗАНИЯ СТРУКТУРЫ [c.278]

    Мы привели несколько примеров, показывающих, что механическая модель молекулы д%ет вполне удовлетворительное предсказание структуры для таких систем, описание которых раньше было немыслимо без концепций резонанса и сопряжения. Более того, как показано в следующей главе, и термохимические свойства этих систем могут быть получены из величин энергий напряжения, соответствующих минимуму потенциальной функции, без введения каких-либо дополнительных предположений. [c.194]


    И все же успешное предсказание структуры энниатина В является скорее исключением, чем правилом. Трудности, с которыми сталкиваются теоретики при решении многоэкстремальных задач, хорошо видны на примере циклического симметричного декапептида грамицидина С [c.385]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]


    Несмотря на отмеченные недостатки, представления теории ОЭПВО исключительно полезны и при правильном применении достаточно надежны для объяснения и предсказания структурных характеристик молекул и ионов, образованных непереходными элементами в самых различных валентных состояниях. Теория ОЭПВО может служить примером простой и эффективной теоретической концепции, позволяющей предвидеть главные детали молекулярной структуры без проведения трудоемких расчетов. [c.406]

    На протяжении всей истории органической химии в ней возникали и продолжают возникать проблемы теоретического характера, для решения которых необходимо было изучить те или иные соединения с экзотической (по крайней мере, для своего времени ) структурой. Для этого нужно было прежде всего их синтезировать и тем самым убедиться в возможности их существования. Изучение свойств таких соединений не только позволяло проверить справедливость предсказаний теории, но и во многих случаях служило импульсом к созданию новых теоретических концепций. Рассмотренные ниже примеры могут служить иллюстрацией сказанного. [c.53]

    Данная система до настоящего времени является примером наиболее смелой попытки предсказания оптического вращения из структуры или, наоборот, конфигурации из данных по вращению, и может оказаться чрезвычайно полезной при структурных исследованиях. [c.447]

    Теперь уместно рассмотреть величины, используемые в трех методах (табл. 6.1) и сделать общие замечания по поводу их значения в разных услових. Например, решение структурной задачи можно облегчить, просто приняв во внимание отсутствие поглощения так, отсутствие поглощения в области выше 210 ммк исключает из рассмотрения сопряженные системы. И действительно, ультрафиолетовые спектры часто используют таким образом, поскольку многие соединения либо только слабо поглощают, либо вовсе не поглощают выше 210 ммк. С другой стороны, сопряженные системы, такие, как полиены или полиины, можно проанализировать этим способом, когда другой метод был бы неприемлем. ЯМР- и ИК-методы оказываются более полезными, так как органические соединения всегда дают эти спектры, а из двух методов для предсказания структуры более пригоден ЯМР. Дальнейшее сравнение указанных методов проведено в табл. 6.2, в которой суммирована способность каждого метода к выявлению обычных функциональных групп, содержащих элементы С, Н, Ы, О. Нецелесообразно подробно обсуждать краткие обобщения, сделанные в этой таблице, но они показывают, как один метод дополняет другой. Наконец, табл. 6.3 поможет читателю найти в книге данные, необходимые при рассмотрении примеров и задач. [c.224]

    Первые расчеты параметров элементарной ячейки низкомолекулярных кристаллов минимизацией потенциальной энергии были выполнены Китайгородским и Мирской [208]. По этой же схеме Коррадини и Авитабиле [209] на примере изотактического полиацетальдегйда, имеющего спиральную конформацию 4ь продемонстрировали возможность предсказания структуры полимерных кристаллов. Из восьми пространственных групп, возможных для собственной симметрии молекулы 4ь т. е. принадлежащих в данном случае тетрагональной системе, были рассмотрены шесть Р 4], / 4ь / 4 /а, Р 41212, / 4 пШ, / 41 сй . [c.77]

    Более объективен показатель надежности эмпирических корреляций Qv, предложенный Б. Мэтьюзом [158]. Он рассчитывается по средневзвешенным значениям w, х, у, z, т.е. в нем учитываются также недопредсказания и сверхпредсказания. В выше отмеченном первом примере его значение составляет -0,17, а во втором +0,38 при максимальных изменениях от -1,0 (в случае полностью неправильных предсказаний w = х= 0) до + 1,0 (w = х = 1, у = z = 0). Таким образом, в первом примере предсказание хуже, чем среднестатистическое, беспорядочное, а во втором — несколько лучше. Значения критерия Мэтьюза для сегментов а-спиралей, -структур и -изгибов аденилаткиназы, рассчитанные по лучшим из имеющихся для этого белка предсказаниям, равны соответственно 0,56, 0,58 и 0,60, а для лизоцима Т4 —0,42, 0,28 и 0,20 [157]. [c.268]

    Интересным примером предсказательных возможностей теоретических методов является определение структуры метилена, наименьшего многоатомного радикала, существующего в триплетном состоянии. По экспериментальным данным Герцберга метилен в триплетном состоянии должен обладать линейной конфигурацией. Расчеты, проведенные Поплом методом N00/2, привели к угловой структуре с валентным углом НСН 141,4°. Это расхождение с экспериментом заставило Попла усомниться в применимости метода для изучения геометрии триплетных состояний. Проведенные несколькими годами позже неэмпирические расчеты геометрии метилена в триплетном состоянии также указывали на угловую структуру с валентным углом 135°, причем улучшения базиса качественно не меняли ситуацию. Эти факты привели Герцберга к необходимости повторных экспериментальных исследований структуры метилена. Данные, полученные в повторных предельно прецизионных экспериментах по изучению микроволнового спектра и спектра ЭПР метилена, согласовывались с предсказаниями теории. [c.348]


    Предсказательные возможности расчетов аЬ initio мол<но проиллюстрировать примером расчета дикатиона (СН)б +. Как ясно из рис. 72, синглетное состояние этого катиона (который можно рассматривать как образованный двукратной ионизацией молекулы бензола) вырождено. Следовательно, плоская структура с осью симметрии шестого порядка ( fi) должна подвергаться искажению Яна — Теллера. Расчет указывает неожиданно, что устойчивой формой дикатиона является неклассическая структура V. Недавно это предсказание было подтверждено при изучении спектров ЯМР гексаметилзамещенного дикатиона [С(СНз)]в +, для которого установлена структура типа V. [c.363]

    При реакции происходит перемеще[[ие электронов от восстановителя к окислителю, т. к. в восстановителе они связаны с ядром слабее, чем в окислителе. Следовательно, предсказание осуществления окислительно-восстановительной реакции возможно на основе знания энергетических уровней электронов в исходных веществах. Энергетические уровни электронов у восстановителя и окислителя зависят от их природы, состояния и окружающей среды. Они характеризуются потенциалами ионизации, сродством к электрону и окислительно-восстановительным потенциалам. Рассмотрим с этих позиций в качестве примера взаимодействие магпия с хлором и определим направление этой окислительно-восстановительной реакции. Магний—элемент ПА группа периодической системы, активный металл, сильный восстановитель. Распределение электронов в атоме следующее—1 5 , 28 2р 35 . Энергия возбуждения одного из двух внешних электронов мала и полностью перекрывается энергией образования химических связей. Поэтому один из электронов 35—подуровня может перейти на Зр — подуровень. В этом случае электронная структура атома будет иметь два неспаренных электрона, и, следовательно,он может проявлять валентность, равную двум. [c.32]

    Этиловый спирт относится к тем немногим органическим соединениям, которые были хорошо известны п течение столетий. Представим себе, однако, что он до сих пор не известен тогда даже весь огромный объем сведений о свойствах других низших спиртов не позволил бы кому-либо предсказать а priori его воздействие (полезное или разрушительное — в зависимости от дозы ) на человеческий организм, не говоря уже о его роли в исторических событиях (таких, как, скажем, пивной путч D Мюнхене или революция 1917 г. в России). Нередко случается и так, что впервые полученные или даже хорошо известные соединения не привлекают внимания, пока, благодаря тому или иному случайному наблюдению, не становятся исключительно важными. Так, ни способность диэтилового эфира служить стабилизирующим растворителем для магнийорганических соединений, ни анестезируюшие свойства хлороформа, ни образование жидких кристаллов бензоатом холестерина, ни уникальный набор физических и химических свойств политетрафторэтилена (тефлона) не могли бьггь в свое время предсказаны только на основе анализа их структур [30]. Таким образом, остается невероятно трудной проблемой разработать общие принципы молекулярного дизайна новых структур, обеспечивающих вешеству заданный набор свойств. Тем не менее для определенных классов задач предсказание свойств на основании знания структуры соединения все же возможно. Такой рациональный подход, основанный на идеологии молекулярного дизайна, доказал свою дееспособность, что мы и постараемся продемонстрировать приводимыми в этом разделе примерами. [c.460]

    Предскажите структуру основного литий органического соединения, которое должно образоваться при металлнроваяии каждого т указанных ниже соединений. Аргументируйте Вами предсказания За исключением примера (е) использовали к-бу-тплйтйй. В случаях (б), в) для ускорения металлирования применяли тетраметил-этилендиамин в примере ( ) использовали г-рег-бутиллитий. [c.181]

    Описание структурной модели. Результаты представленных в 2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерметаллидов, образования пересышенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано вьппе, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следую-шим образом. [c.99]

    Можно ли выводы Ли и Шераги в отношении найденной структуры Met-энкефалина считать объективными Является ли метод Монте Карло-Минимизации перспективным для расчета нативных конформаций белков и Механизмов их сборки Адекватен ли он в принципе реальному процессу свертывания белковой цепи У самих авторов на этот счет нет сомнений. Оценивая в заключении статьи возможности предложенной процедуры, они отмечают "Применение метода Монте Карло-минимизации к свертыванию олигопептидов не только способствует пониманию физической сущности процесса свертывания белковой цепи, но также может являться эффективным алгоритмом предсказания нативных структур белка.. ..Более того, поскольку метод Монте Карло-минимизации позволяет проводить исследования крупномасштабных изменений (и белковое свертывание является лишь одним таким примером), то он может быть весьма полез- [c.349]

    Обстоятельный анализ предсказательных возможностей корреляционного подхода был проведен К. Нишикавой [185], который также в качестве примеров рассмотрел три уже упоминавшихся алгоритма Чоу и Фасмана, Робсона и Лима. При идентификации трех состояний (а-спираль, -структура, клубок) точность определялась по показателю качества Q3, Дающего наиболее оптимистические оценки (см. ниже), а при идентификации четырех состояний (а-спираль, -структура, -изгиб, клубок) использовался показатель Q4, занижающий вклад отрицательных предсказаний и более реально отражающий действительные возможности методов [184]. Рассчитанные Нишикавой показатели качества Q3 попали в интервал 50-53%, а Q4 - 40-42%. [c.511]

    При сравнении предсказанной и наблюдаемой вторичной структуры в данном случае обнаруживается хорошее соответствие предсказанная спираль на один остаток короче, а (3-лист и поворот предсказаны точно. Однако приведенный пример не очень показателен в том отношении, что в рассматриваемом случае потенциалы а, и весьма высоки и явно различаются. Обычно в реальных структурах ситуация менее определена и предсказания значительно менее точньь [c.145]

    Одна нз причин широкого использования гетероциклических соединений — возможность тонко манипулировать их структурой для достижения необходимых модификаций свойств. Как мы увидим в гл. 2, многие гетероциклы могут быть отнесены к одной из нескольких широких групп структур которые обладают сходными свойствами, но имеют и значительные внутригрупповые различия, в том числе вариации кислотности и основности, полярности, различную чувствительность к атаке электрофилом или нуклеофилом. Разнообразие структур гетероциклических систем обусловлено возможностью замены одного гетероатома на другой и изменения положения одного и того же гетероатома в кольце. Другой вариант модификации структур многих гетероциклов — возможность введения в их структуру функциональных групп либо в качестве заместителей, либо непосредственно в циклическую систему. Например, оснбвные атомы азота могут быть введены в молекулу либо в виде экзоциклической аминогруппы, либо как часть кольца. Это обусловливает чрезвычайную изменчивость структур за счет наличия или имитации функциональных групп. Примером последней может служить имитация циклической системой 1Н-тетразола карбоксильной группы, так как они подобны по кислотности и стерическим требованиям (гл. 8). Одной из основных целей последующих глав этой книги является создание основы для понимания и предсказания влияния строения гетероциклических соединений на их свойства. Вооружившись этим пониманием, химик-гетероциклист может сконструировать структуру в соответствии с разнообразными требованиями, модифицируя гетероциклический компонент. [c.10]

    Другим примером молекулы с десятьюэлектронной валентной оболочкой является молекула С1Рз, у которой неподеленные пары электронов занимают два экваториальных положения. Предсказания теории о неравноценности связей С1—Р в этом соединении подтверждены исследованиями его молекулярной структуры [1017, 3774]. [c.325]

    Разумеется, применимость этой модели зависит от точности, с которой могут быть предсказаны орбитальные углы и распределение зарядов. Вычисление энергии Н-связи не является строгой проверкой, так как имеется свобода в выборе параметров, связанных с размещением точечных зарядов. Предсказание углов, образуемых связью, менее произвольно, так как они не находятся в определенной зависимости от электростатической модели Н-связи. В определении структуры льда достигнут значительный успех. Если предполагать для атомов кислорода 5р -гибридизацию, то каждая пара несвязывающих электронов должна находиться точно на линии, соединяющей центры двух атомов кислорода. Для карбонильных оснований Н-связь должна составлять угол 120° с направлением связи С = О. В кристаллической муравьиной кислоте этот угол составляет 122°, но в кристаллической уксусной кислоте он равен 144° (см. рис. 80). Отклонение от 120° наблюдается также в кристаллической структуре амидов. Данные табл. 103 показывают, что угол между связью С = О и линией N... О изменяется от 95 до 164°. Наконец, в табл. 84 даны примеры Н-связей, в которых донорами протона являются спирты. [c.199]

    Примерами многоядерных карбонилов, в которых имеются мостиковые карбонильные группы, являются нонакарбонил железа Ре2(С0)д и октакарбонил кобальта, Сог(СО)8. Структура Рег(С0)9 изображена на рис. 17, б, а спектр приведен на рис. 18, в. На основании правил отбора Шеляйн и Питцер (1950) предсказали, что для шести концевых карбонильных групп должны наблюдаться два активных в ИК-области колебания, а для трех мостиковых карбонильных групп — одно активное колебание. Инфракрасный спектр, представленный на рис. 18, в, подтверждает это предсказание. Полосы поглощения 2082 и 2019 принадлежат концевым, а полоса 1829 см — мостиковым карбонильным группам. [c.68]


Смотреть страницы где упоминается термин Пример предсказания структуры: [c.252]    [c.517]    [c.14]    [c.527]    [c.132]    [c.517]    [c.34]    [c.216]    [c.284]    [c.369]    [c.369]    [c.115]    [c.125]    [c.286]    [c.517]    [c.147]    [c.551]    [c.571]    [c.75]    [c.147]    [c.114]    [c.13]   
Смотреть главы в:

Биофизическая химия Т.1 -> Пример предсказания структуры




ПОИСК







© 2025 chem21.info Реклама на сайте