Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принцип реальная

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    Для приближенного вычисления летучестей реальных газов можно воспользоваться методом расчета, основанным на принципе соответственных состояний. Согласно этому принципу, ряд одинаковых свойств, в том числе и коэффициент активности различных реальных газов, оказываются равными при одинаковых значениях приведенной температуры и приведенного давления.  [c.136]

    В последние годы курс РТВ все теснее и теснее сближается с курсом ТРИЗ. Многие механизмы теории могут быть успешно применены для тренировки воображения. И наоборот принципы и методы из курса РТВ вполне пригодны для работы с реальными техническими задачами и идеями. Задача на фантазирование отличается от реальной технической задачи меньшими ограничениями, но в обоих случаях хорошие результаты могут быть достигнуты только при высокой культуре мышления. [c.131]

    Теплоемкость реального газа зависит от двух параметров состояния. Для ее определения используют методы, в принципе сходные с ранее изложенными. [c.15]

    Изложение классической механики начинается обычно с законов Ньютона. Но можно начать и с другого конца , а именно, с формулировки весьма общего утверждения, именуемого принципом наименьшего действия. Согласно этому принципу реальному движению механической системы (в отличие от всех других ее мыслимых движений) отвечает экстремальное (а для достаточно малого промежутка времени At = = t2 ti — минимальное) значение интеграла, называемого действием [c.24]

    Можно указать три принципа реального регулирования МВР. Первый, и наиболее общий, заключается в выборе адекватного способа полимеризации. Практически возможности такого регулирования почти неограниченны. Действительно, как показывает анализ основных статистических классов МВР, для многих полимеров может быть получено любое МВР — от почти однородного в случае живых цепей, до сколь угодно широкого и мультимодального при статической или динамической гетерофазной полимеризации. [c.256]

    Группа, в которой преобладают специалисты, придерживается традиционных вариантов и весьма единодушно отвергает дикие идеи. Неспециалисты значительно более терпимы к таким вариантам. Можно было бы просто констатировать, что специалисты, намного лучше знающие реальные условия доменного производства, действуют увереннее, решительно отклоняя явно неподходящие варианты. Однако приходится учитывать чрезвычайно важный факт обе группы отвергли наиболее дикий вариант 5, который в принципе совпадает с правильным ответом... [c.6]

    В практике перегонки и ректификации встречается несколько видов реальных растворов, проявляющих различные отклонения от законов идеального раствора. Целесообразно сгруппировать эти растворы по принципу общности признаков, оказывающих определяющее воздействие на выбор техники их перегонки и ректификации. [c.35]


    Однопараметрическая диффузионная модель значительно лучше, чем модель идеального вытеснения, соответствует условиям в реальных аппаратах химической технологии, в которых перемещение веществ проводится по принципу вытеснения, например, в трубчатых реакторах, противоточных аппаратах и т. д. Недостатками этой модели являются сложность постановки граничных условий и необходимость предварительной оценки коэффициента продольного смешения. [c.58]

    Меры, способствующие непрерывности производственных процессов, приведенные в данном разделе, не исчерпывают всех возможностей для увеличения степени непрерывности. Важно подчеркнуть, что реальное соблюдение принципа непрерывности процесса на конкретном нефтехимическом предприятии в известной мере является характеристикой степени безопасности данного производства и усилия проектировщиков, строителей и эксплуатационников должны быть направлены на оптимальное решение этой задачи. [c.121]

    Активность растворенной соли Яг может быть определена по давлению пара, температуре затвердевания, по данным о растворимости рассчитывается она теми же способами, которые кратко изложены в т. I (гл. VI и VII). Специфическим и в то же время наиболее удобным методом определения активности и коэффициентов активности электролитов является метод э.д.с. (электродвижущих сил). Все методы определения активности соли и упомянутые выше уравнения приводят к величине, характеризующей реальные термодинамические свойства растворенной соли в целом, независимо от того, диссоциирована она или нет. Однако в общем случае свойства различных ионов неодинаковы, и в принципе можно ввести и рассматривать термодинамические функции отдельно для ионов различных видов, используя практический коэффициент активности у [см. т. I, стр. 207—211, уравнения (VI, 24) и (31 6)]. [c.395]

    Если объединить больцмановские представления об энтропии с законами термодинамики, мы придем к одному из наиболее важных принципов науки при всяком реальном, самопроизвольном процессе, включая химические реакции, неупорядоченность Вселенной обязательно возрастает. В любой изолированной системе, в которой полная энергия не может изменяться, самопроизвольной является реакция, при которой происходит возрастание энтропии (и неупорядоченности). Без постороннего вмешательства невозможен ни один процесс, результатом которого является повышение порядка, т.е. уменьшение энтропии. Поставляя в систему достаточную энергию, можно заставить протекать реакцию, даже если в результате нее происходит уменьшение энтропии. Но если не поставлять достаточной энергии, реакция, приводящая к повышению упорядоченности, никогда не произойдет. [c.57]

    Эти допущения кажутся разумными, однако реальная картина, к.сожалению, может сильно отличаться от модельной. Корректность (2.88) в принципе ниоткуда не следует, и вероятности незапрещенных переходов могут быть различны. В конкретных процессах некоторые переходы могут оказаться предпочтительными (например, переходы, связывающие состояния одного и того же типа взаимодействия переходы, ведущие к образованию слабосвязанных комплексов и т. д.). Сам процесс многоразового последовательного столкновения в тримолекулярной реакции некоррелирован в том смысле, что каждое последующее столкновение не обязательно ведет к еще большей стабилизации слабосвязанного комплекса, а, напротив, может вызвать его диссоциацию. При строгой постановке задачи расчета /с необходимо сопоставлять вероятности стабилизации и диссоциации для каждого столкновения с конечным интегрированием по полному сечению о . Эта задача кажется слишком сложной. Уточнение теории здесь возможно лишь при получении экспериментальных данных о детальной динамике и траекториям взаимодействия. [c.91]

    Естественно, что проблема получения информации о параметрах возникает только в том случае, если теоретическая модель адекватна реальному процессу. И получение этой информации и есть в общем случае тот основной результат, который достигается решением ОКЗ. Кроме того, мы устанавливаем, по каким концентрациям можно применять принцип квазистационарности и какими стадиями можно пренебречь. Не следует забывать, что, найдя адекватную схему процесса и даже один пз возможных наборов коэффициентов скорости, мы тем самым получим математическую модель процесса, которую можно использовать в дальнейшем (например, в технологических расчетах). [c.230]

    Исходя из принципа существования функций смешения предложен [341 следующий порядок расчета г компоненты преобразуют по определенным правилам рассчитывают преобразованный результат смешения по линейной модели для преобразованных компонентов возвращаясь путем обратного преобразования к реальным компонентам, определяют физический результат [c.97]

    Однако принцип соответственных состояний, по которому для любых газов при одинаковых т и я совпадают ф, 2 и т. д., оказался справедливым для реальных систем и получил широкое распространение [5, 6]. В частности, на основе этого принципа можно утверждать, что если уравнение состояния 1 моль реального газа записать, вводя коэффициент сжимаемости г  [c.35]


    Основным принципом является замещение, т. е. замена атома водорода другим атомом или группой. Например, замена водорода на хлор (хлорирование), на нитрогруппу (нитрование), на метильную группу (метилирование) —даже в тех случаях, когда такие замещения не отражают реальных путей синтеза. [c.75]

    Модель идеального вытеснения используется в химической технологии при описании аппаратов, работающих по принципу вытеснения, например, трубчатых аппаратов с большим отношением длины к диаметру. Ее достоинством является относительная простота решения уравнений математического описания и вместе с тем приемлемая во многих случаях точность воспроизведения реальных гидродинамических условий. [c.173]

    Этот метод редко применим в обычных инженерных расчетах, однако он хорошо иллюстрирует принципы построения графиков. Большинство таблиц, и графиков с термодинамическими данными построены на основании немногочисленных реальных экспериментальных точек. [c.22]

    Обычно говорят о константах равновесия процессов, соотнося между собою уравнения химических реакций и закона действующих масс. Однако в результате исследования равновесных состояний в принципе нельзя раскрыть действительный механизм химических превращений, т. е. такие исследования не несут никакой информации о характеристиках и последовательностях элементарных актов, определяющих химическое превращение. Кроме того, используемые уравнения реакций, правильно передавая стехиометрические взаимосвязи между химическими формами, могут не иметь ничего общего с реакциями, реально протекающими как при подходе к равновесию, так и после его достижения (равновесие динамично). А так как в равновесии вообще нельзя провести различий между начальными и конечными реагентами, совершенно безразлично, какой из формально возможных наборов процессов (точнее, наборов уравнений реакций) используется для последующей записи взаимосвязи между равновесными концентрациями реагентов (согласно ЗДМ). Необходимо только, чтобы список уравнений реакций был полным, т. е. отражал бы взаимосвязи между всеми представленными в равновесной системе формами. На математическом языке задача сводится к выбору подходящего базиса линейно-независимых уравнений реакций. Максимальное число таких уравнений равно числу сложных химических форм. [c.7]

    В реальных условиях процессы протекают с конечной скоростью, а, следовательно, термодинамически необратимо. Направление протекания процессов в изолированных системах определяется с помощью принципа возрастания энтропии. Этот принцип определяет, что энтропия изолированной системы при неравновесном протекании процессов в ней увеличивается. [c.83]

    Можно ли выводы Ли и Шераги в отношении найденной структуры Met-энкефалина считать объективными Является ли метод Монте Карло-Минимизации перспективным для расчета нативных конформаций белков и Механизмов их сборки Адекватен ли он в принципе реальному процессу свертывания белковой цепи У самих авторов на этот счет нет сомнений. Оценивая в заключении статьи возможности предложенной процедуры, они отмечают "Применение метода Монте Карло-минимизации к свертыванию олигопептидов не только способствует пониманию физической сущности процесса свертывания белковой цепи, но также может являться эффективным алгоритмом предсказания нативных структур белка.. ..Более того, поскольку метод Монте Карло-минимизации позволяет проводить исследования крупномасштабных изменений (и белковое свертывание является лишь одним таким примером), то он может быть весьма полез- [c.349]

    Почва содержит исключитольно большое и разнообразное микронаселсние. Состав микроорганизмов определяется типом и состоянием почвы. Это обстоятельство делает в принципе реальным применение мпкробпологпческой диагностики при агрономических и санитарных исследованиях ночв. [c.75]

    В принципе, реальные эксперименты можно вести при фиксированном (или исключенном) времени, но переменной координате, или при фиксированной координате, но переменном времени. Возможность подобной перестановки координата время — отличительный признак истинно транспортных методов однако, в некоторых вариантах использования ультрацентрифуг или электрофореза получаются равновесные, неподвижные кривые распределения концентрации ( полосы ), например, при изоэлект-рической фокусировке, зонном и скоростном центрифугировании в градиенте плотности и т. п. [c.4]

    Принцип реального исполнения. В том случае, если должник приступил к исполнению обязательств, но исполнил его ненадлежащим образом, уплата неустойки и возмещение убытков не освобождают должника от исполнения обязательства в натуре, конечно, если кредитор не согласится на замену исполнения обязательства денежным возмещением. Но если должник и не приступал к исполнению обязательства (что чаще говорит о невозможности его исполнения), возмещение убытков и уплата не-устойьси освобождают его от исполнения обязательства в натуре. [c.420]

    Некрупные изобретения всегда нужны на начальном этапе становления технической системы (до точки 1) они наращивают плоть новой идеи, позволяют перейти от схемы к реальной вещи. В общем, нужны небольшие изобретения и на этапе зрелости системы (между точками / и 2), но основная масса мелсих изобретений относится к старым техническим системам от точки 2 до точки 3 и далее . Массовая инъекция таких изобретений призвана искусственно продлить рост и жизнь устаревших по своим принципам систем. [c.52]

    Оба принципа следует рассматривать как первое приближение к реальной картине электродного процесса, которое может быть уточнено, если учесть основные осложняющие факторы. Эти осложнения возникают прежде всего в тех случаях, когда продукты частных реакций взаимодействуют между собой. Так, например, если при выделении двух металлов М и Ма образуются не эвтектика [М1]-ММ2], а их твердый раствор [М1М2]ь 3 или интерметаллическое [c.388]

    Недостаток места не позволяет нам провести исследование реакторов с кипящим слоем. Исследование всех типов реакторов ведется по одному принципу, хотя объем каждой части исследования варьируется от одного тина реактора к другому. Прежде всего ставится модель реактора, выводятся описывающие ее уравнения, и тогда становится ясным характер задач расчета реактора. Там, где это возможно, рассматриваются вопросы оптимального проектирования реактора. Часто случается, что провести оптимальный расчет не сложнее, чем обыкновенный. Даже еслп найденное оптимальное решение неосуществимо на практике, оно всегда дает напвысшие возможные показатели процесса, к которым надо стремиться при реальном проектировании реактора. Расчет реактора связан, в первую очередь, с решением стационарных уравнений. В то же время важно изучить поведение реактора в нестационарном (переходном) режиме, так как найденный стационарный режим может быть неустойчивым. В последнем случае необходимо либо отказаться от проведения процесса в этом режиме, либо стабилизировать его с помощью надлежащего регулирующего устройства. В конце каждой главы мы возвращаемся к анализу допущений, сделанных нри постановке модели реактора, и исследуем влияние отклонений от идеализированной модели на характеристики процесса. [c.10]

    Полученные сведения о численных значениях равновесных соотношений для различных пластовых нефтегазовых систем при переменных Г и р позволяют изучить возможность применения в практических условиях принципа Ле-Шателье, направленного для выявления характера термодинамического процесса (экзотермического и эндотермического), происходящего в залежи. В связи с этим нами построены температурные зависимости константы равновесия (при р = onst) для всех рассмотренных случаев состояния пластовой жидкости. По кривым видно, что принцип Ле-Шателье в конкретных пластовых условиях для реальных нефтегазовых систем хорошо выдерживается, так как с повышением температуры константа равновесия заметно увеличивается, свидетельствуя об экзотермическом направлении процесса. [c.112]

    Модель идеального вытеснения широко используют в химической технологии при описании аппаратов, работающих по принципу вытеснения, например трубчатых реакторов и теплообменников. Ее достоинствами являются относительная простота ргшения уравнений математического описания, построенного с применением данной модели, и вместе с тем приемлемая во многих слу4аях точность воспроизведения реальных гидродинамических условий. [c.57]

    Кроме того, на примере оптимизации реактора изложен подход к решению реальной вариационной задачи с ограничениями типа неравенств. Решение этих задач представляет собой, вообще говоря, весьма сложную проблему. Однако задачу оптимизации реактора идеального вытеснения все же можно решить, если принять во внимание некоторые свойства оптимизируемого процесса. К сожалению, и общем случае не представляется возможным указать достаточно удобные методы решения вариационных задач с ограничениями тйпа неравенств. Поэтому для каждого конкретного процесса приходится искать са.мый удобный прием или же решать задачу с помощью других методов, например динамического программирования или принципа максимума, более приспособленных для решения таких адач. [c.222]

    Сопоставление молекулярных весов. Оп1зеделе1Ше молекулярного веса связано со многими экспериментальными трудностями. Кроме того, оно требует отиосительно большой затраты времени и поэтому представляет собой дорогостоящую экспериментальную процедуру. Тщательный анализ литературных данных [59] приводит к выводу, что точность определения молекулярного веса в принципе значительно выше, чем реальная точность определения молекулярного веса нефтяных фракций. [c.269]

    Инициаторы полимеризации. Инициирование цепей является одним из наиболее сложных вопросов в свободно-радикальной полимеризации, поскольку практически все известные способы получения свободных радикалов тем или иным путем могут быть использованы для этой цели. Это чрезвычайно важно, так как успех любой реакции полимеризации зависит от постоянной и подходящей скорости получения активных центров. Некоторые мономеры, особенно стирол (и, по-видимому, стиролы с замещениями в кольце), подвергаются некатализируемо11 реакции полимеризации при нагревании без добавления инициаторов. Эта термическая реакция была исчерпывающе изучена [22]. Однако точно природа реального процесса инициирования все еще не известна. С энергетической и кинетической точек зрения процесс является, по крайней мере, бимолекулярным [46] большинство исследователей постулирует образование из мономера в результате бимолекулярной реакции дирадикала молекулы мономера соединяются по принципу хвост к хвосту , как указано ниже, [c.133]

    Для объяснения на6. 1юдаемых эффектов была построена математическая модель, основанная на принципах механики многофазных сред и описывающая гидродинамические процессы с учетом физико-химических превращений, происхо-дящ11х в райзере лифт-реактора каталитического крекинга при подаче восстанавливающего агента [4.38, 4.39]. Результаты численного решеипя показывают (рнс. 4.4), что существующий в реальных условиях характер течения в райзере реакюра не обеспечивает необходимое перемешивание подаваемого топливного газа с катализатором над областью ввода катализатора в райзер. Это приводит, согласно полученным [c.123]

    Более того, принцип стремлеггия к минимуму внутре1н1ей энергии требует, чтобы все экзотермические рсакции доходили до конца, т. е. исключает возмо к-ность обратимых реакций однако такие рсакции реально существуют. КнасЩ1 [c.191]

    Конечно, Ривервуд и его жители, существуют только на страницах этой книги. Их проблемы, однако, вполне реальны. Несомненно, что химические принципы, факты и методы исследования, которые помогли разобраться в этом деле, могут применяться для решения многих задач в различных областях. [c.98]

    Формализация процессов выработки и принятия решений оператором. До сих пор подходы к формализации процессов принятия человеко-машинных решений при управлении сложными объектами базировались в основном на теоретико-игровом, семиотическом принципах, методах теории идентификации и планирования эксперимента [206]. К недостаткам таких методов применительно к системам принятия решений можно отнести трудоемкость априорного исследования всех вариантов поведения сложных объектов управления, качественный характер получаемых решений при семиотическом подходе, непредставимость оперативной статистики по реакциям объекта на управляющие воздействия в реальном масштабе времени и т. п. На этом фоне особенно перспективна концепция человеко-машинного управления. Человеко-машинные системы обладают собственными знаниями , что позволяет (автоматически или путем общения с человеком) находить управляющие решения или вырабатывать и обосновывать логические факты, не заложенные априори, вести диалог с ЛПР. Такие человеко-машинные системы принято относить к классу систем принятия решений с интеллектуальным механизмом автоматического поиска (СПРИНТ). [c.343]

    Математический образ реального процесса (оператор L в уравнении (4.3)) представляет собой совокупность модулей или метаалгоритмов Р, реализующих функции САПР. Множество Р естественным образом, исходя из совокупности рассматриваемых явлений (см. рис. 4.2) и принципов системного анализа, распадается на ряд подмножеств [c.111]

    Итак, алгоритмизация этапа технологического расчета единяц оборудования состоит в разработке соответствующего математического описания, выборе метода решения системы уравнений этого описания, определении параметров, установлении адекватности модели реальному объекту, т. е. в разработке математической модели объекта. Независимо от функционального назначения элемента схемы математическая модель должна строиться по модульному принципу, причем таким образом, чтобы можно было иметь возможность при необходимости достаточно легко внести нужные изменения (дополнения или расширения функций) в модель без ее значительной переработки. Основная функция модели состоит в сведении материального и теплового балансов — получении выходных данных потока по входным. В зависимости от назначения математического описания отдельных явлений процесса (фазовое и химическое равновесие, кинетика массопередачи, гидродинамика потоков и т. д.) общее математическое описание может быть существенно различным. Важно при создании модели не нарушать общей ее структуры, т. е. иметь возможность использования единых алгоритмов решения. [c.141]

    В реальных лсидкостях принцип сохранения вихрей переходит в прпнцип устойчивости форм вихревого движения. Во всех практических случаях внхрн обладают значительной устойчивостью. [c.108]

    Однако для реальных промышленных объектов химической технологии, как правило, характерно наличие априорной информации о внутренней структуре процессов, протекаюпщх в них. При этом связь между поведением всей системы в целом и составляюпщх элементов можно установить либо на основе общих методов механики сплошной среды, либо на основе блочного принципа построения модели системы, исходя из набора элементарных типовых операторов. Поэтому изложенный здесь первый подход к синтезу функционального оператора ФХС, рассматриваемый как самостоятельный метод, обычно уступает по своей гибкости и эффективности второму и третьему подходам, о которых речь пойдет ниже. Вместе с тем очевидно, что в комплексном использовании и взаимном дополнении формальных и неформальных методов описания ФХС заложены большие возможности повышения эффективности решения проблемы синтеза функциональных операторов ФХС. [c.131]

    Выбор метода определяется характеристикох" системы, однако окончательный лыбор является несколько произвольным. Данные, приведенные на рис. 64, довольно просты и вполне реальны для большинства рассматриваемых систем. Кроме того, они наглядно иллюстрируют рассматриваемые принципы. Более подробный анализ методов расчета приводится в работе [48 ]. В настояш ее время применяются методы расчетов энтальпии, изложенные в следующих работах (табл. 13)  [c.124]


Смотреть страницы где упоминается термин Принцип реальная: [c.123]    [c.33]    [c.2]    [c.17]    [c.108]    [c.117]   
Разрушение твердых полимеров (1971) -- [ c.126 ]




ПОИСК







© 2025 chem21.info Реклама на сайте