Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильная группа реакции с основаниями

    Главные особенности реакций конденсации были уже рассмотрены в разд. 3.3.2 и 5.1.4. Уместно вспомнить о том, что совсем не обязательно (хотя и желательно) использовать стехиометрическое количество основания или очень сильное основание равновесная концентрация карбаниона оказывается вполне достаточной. Следует также помнить о том, что в системе, содержащей более одного источника карбанионов или несколько карбонильных групп, реакция протекает между самым стабильным карбанионом и самой электрофильной карбонильной группой. [c.101]


    Катализируемая основаниями дегидратация не осуществима для простейших алканолов, но является достаточно обычной реакцией для оксисоединений, содержащих а-водородные атомы, кислотность которых повышена за счет наличия карбонильных групп. Реакции подобного типа часто сопровождают альдольные конденсации (гл. 15, разд. 2,Б, реакция 2). [c.340]

    Некоторые реакции карбонильных групп, катализируемые кислотами и основаниями [c.488]

    Под влиянием небольшого количества основания две молекулы ацетальдегида вступают в реакцию конденсации таким образом, что один из трех а-атомов водорода первой молекулы ацетальдегида присоединяется к атому кислорода второй молекулы альдегида, а остальная часть первой молекулы соединяется с атомом углерода карбонильной группы второй молекулы. Полученное соединение носит название ацетальдоля (/3-окси-н-масляный альдегид) и существует в двух формах в виде альдегида с открытой цепью или в виде циклического полуацеталя  [c.300]

    Почему при участии основания скорость реакции возрастает Можно указать много причин. В основном это происходит благодаря тому, что основание (имидазол) связывает в переходном состоянии (ПС) протон атакующей молекулы воды, так что на атоме кислорода в составе последней сосредоточена повышенная электронная плотность. Таким образом, этот атом кислорода воды становится более отрицательно заряженным и возрастает его способность передавать электронную пару карбонильной группе. Суммарный результат — понижение свободной энергии активации в присутствии основания. В отсутствие катализатора протон акцептирует вторая молекула воды, которая обладает меньшей основностью и, следовательно, является менее эффективным катализатором. [c.196]

    Однако есть основания утверждать, что на первой стадии реакции протон присоединяется не к одному из атомов углерода, а по месту с наибольшей электронной плотностью — к атому кислорода карбонильной группы. [c.81]

    Механизм реакции. Согласно современным представлениям, реакция сложноэфирной конденсации протекает в три стадии (все стадии обратимы). На первой стадии алкоголят-ион, образовавшийся при взаимодействии следов спирта с натрием, отщепляет от метиленового компонента протон, причем образуется стабилизированный сопряжением с карбонильной группой мезомерный анион (78). Известно, что раствор натриевого производного такого типа не проводит электрический ток. Поэтому есть основания предполагать, что оно существует в виде тесной ионной пары, в которой катион металла координируется по месту с наибольшей электронной плотностью — атому кислорода. [c.230]


    Кинетические исследования реакции натрийацетоуксусного эфира с алкилгалогенидами в безводном этаноле, приводящей к С-алкилпроизводным ацетоуксусного эфира, показали, что она имеет второй порядок, аналогично реакциям гидролиза и алкоголиза алкилгалогенидов. На этом основании можно утверждать, что эта реакция относится к реакциям нуклеофильного замещения, протекающим по механизму N2, причем анион натрийацетоуксусного эфира, подобно ионам СМ и ЫОг , можно рассматривать как амбидентный нуклеофильный реагент, в котором местом с наибольшей нуклеофильной реакционной способностью является атом углерода метинной группы, а местом с наибольшей электронной плотностью — атом кислорода карбонильной группы. [c.244]

    Природа растворителя. При использовании неполярных или малополярных растворителей натрийацетоуксусный эфир существует преимущественно в виде ионных пар, причем ион натрия, являясь жесткой кислотой, координируется по атомам кислорода карбонильных групп, которые представляют собой жесткие основания [см. формулу (95)]. В этих условиях ион натрия экранирует кислородные центры аниона, и реакция с мягкими кислотами — алкилгалогенидами — протекает в основном по атому углерода — мягкому кислотному центру. [c.249]

    При проведении реакции карбонильное соединение постепенно вводят к заранее приготовленному реактиву Гриньяра, и, следовательно, в реакционной массе всегда имеется избыток последнего, поэтому есть основания предполагать, что на первой стадии реакции взаимодействует димер реактива Гриньяра (см. разд. 4.2). С одной стороны, с атомом углерода карбонильной группы реагирует как нуклеофил один из радикалов К, а с другой — по атому кислорода этой же карбонильной группы, на котором сосредоточена избыточная электронная плотность, координируется атом магния, имеющий дефицит электронной плотности. Это приводит к дополнительному увеличению положительного заряда иа атакуемом атоме углерода карбонильной группы. [c.278]

    Таким образом, для проведения реакции присоединения оснований к альдегидам и кетонам в каждом конкретном случае следует создавать среду с таким значением pH, чтобы карбонильная группа была достаточно активна и вместе с тем обеспечивалась достаточно высокая концентрация нуклеофила. [c.125]

    Наиболее типичными для альдегидов являются реакции нуклеофильного присоединения но карбонильной группе, которые подвержены кислотному или основному катализу. Кислота-катализатор координируется по атому кислорода карбонильной группы, несущему дробный отрицательный заряд, усиливает поляризацию карбонильной группы и облегчает атаку нуклеофила. Основание-катализатор повышает активность реагента, образуя на его основе нуклеофильную частицу  [c.87]

    С обратной картиной, когда лимитирующий участник реакции-субстрат, приходится сталкиваться при катализе кислотами. Кислоты катализируют реакции, как правило, путем перевода одного из субстратов, являющегося основанием, в протонированную форму, т. е. в сопряженную кислоту. Подобно присоединению иона металла, присоединение протона, создавая положительный заряд в определенной области молекулы, повышает ее электрофильные свойства н облегчает реакцию с нуклеофильным компонентом. Например, в кислой среде облегчается гидролиз сложных эфиров кислот, поскольку карбонильная группа протонируется и электронная плотность оттягивается от атома углерода, что облегчает последующее взаимодействие с нуклеофильной молекулой воды [c.313]

    Конечно, такой обмен легче всего осуществляется в случае относительно кислых протонов, например протонов в а-положении к карбонильной группе, но даже слабокислые протоны могут вступать в реакцию обмена с основаниями, если эти основания достаточно сильные (см. т. 1, разд. 5.5). Для медленного обмена с кислотой протонов, находящихся в -положении к группе ОН (например, метильных протонов в 2-пропаноле), был найден еще один механизм. Это механизм отщепления — присоединения, при котором сначала дегидратируется спирт (т. 4, реакция 17-1), а затем молекула воды снова присоединяется (т. 3, реакция 15-2) [46]. [c.422]

    Имеются две пробирки с образцами альдегида и кетона. На основании проделанного ранее определите, какими двумя реакциями можно подтвердить наличие карбонильной группы в обоих соединениях, какие три реакции пойдут для них различно. [c.54]

    Метаболит Ь1У дает положительную реакцию с реактивом Браттона — Маршалла после его кислотного гидромера. Он взаимодействует с 2,4-динитрофенилгидразином, что указывает на наличие карбонильной группы. На основании физико-химического метода анализа предположено, что оксазепам может находиться в равновесии с таутомерной формой (Ь1Уа), в которой иминогруппа легко гидролизуется, образуя гидратную форму (ИУб)  [c.190]


    Кроме реакций, катализируемых кислотами, известны и реакции карбонильной группы, катализируемые основаниями (см. также раздел об альдольной конденсации, стр. 330). Так, например, образование циангидринов путем присоединения цианистого водорода [c.292]

    Дальнейшие подтверждения важности стадии енолизации вытекают из работ по катализированной основаниями конденсации соединений, содержащих карбонильные группы. Имеется целый ряд таких реакций, харак терных для альдегидов, кетонов, карбоксильных кислот, эфиров, амидов и т.д. Из них паиболее просты реакции альдольной конденсации, являющиеся прототипом ряда других реакций. Эти реакции идут по уравнению [c.492]

    Вс реакции конденсации по карбонильной группе экзотермичны, нс по величине теплового эффекта их можно разделить на две большие группы. К первой относятся сильно экзотермические и практически необратимые реакции конденсации карбонильных соединений с ароматическими веществами и олефинами (тепловой эффект 104—106 кДж/моль, нли 25—35 ккал/моль). Ко второй принадлежат обратимые процессы образования ацеталей и циангидринов, собственно альдольные конденсации и реакции с азотистыми основаниями. Стадия присоединения в этих обратимых реакциях имеет сравнительно небольшой тепловой эффект (21 — 63 кДж/моль, или 5—15 ккал/моль), но нз-за последующих реакций конденсации или дегидратации он может значительно изменяться в ту нли другую сторону, определяя равновесные отношения суммарного процесса. Обычно равновесие значительно смещается вправо, когда за присоединением следует дегидратация или когда образуются сравнительно стабильные вещества с ияти-ше-стичлгнными циклами. [c.549]

    Следовательно, рассматриваемое превращение относится к реакциям специфического кислотного катализа, т. е. они ускоряются свободными ионами водорода. Поэтому в качестве катализатора синтеза ДМД могут быть использованы любые вещества, продуцирующие в водном растворе свободные протоны органические и минеральные кислоты, катионообменные смолы, соли сильных кислот и слабых оснований и т. д. Выбор серной кислоты обусловлен ее дещевизной и доступностью, высокой активностью и практическим отсутствием окисляющего действия. Первичным актом реакции Принса является присоединение протона катализирующего вещества к кислородному атому карбонильной группы формальдегида с образованием гидроксиметиленкарбкатиона  [c.369]

    Основные методы получения. Строение карбонильной группы и реакционная способность альдегидов и кетонов. Реакции нуклеофильного ирисое,динения по С=0 связи. Енолизация альдегидов и кетонов при действии 1ШСЛ0Т и оснований, таутомерия. Альдольная и крото-новая кон1 енсация. Особенности свойств ароматических альдегидов и кетонов. [c.195]

    Происходящие в процессе реакции превращения означают, что карбонильная группа биотина служит акцептором протонов в одном случае и донором протонов в другом. Более вероятный механизм предполагает наличие внещнего основания. Таким образом, альтернативой согласованному механизму служит ступенчатый процесс, включающий отщепление а-протона с последующим карбоксилированием. Чтобы показать возможность такого механизма, было исследовано [346] действие пропионил-СоА-карбо- [c.484]

    Есть основания предполагать, что и эта реакция протекает как 1,4-присоединение с промежуточным образованием енола, однако в данном случае нельзя утверждать, что электронейт-ральная частица Н- на первой стадии реакции обязательно атакует атом кислорода карбонильной группы возможна атака и по р-атому углерода  [c.84]

    Следует добавить, что -атомы водорода по сравнению с а-атомами менее активированы карбонильной группой, так как индуктивный эффект быстро затухает по цепи ординарных связей С—С. Естественно, что при действии основания на бен, -альдегид или триметилуксусный (пивалиновый) альдегид, у которых нет в а-положении атомов водорода, мезомерный анион вообще не образуется, и проис,чодит реакция Канниццаро. [c.186]

    Таким образом, в реакции конденсации участвуют карбонильный компонент, имеющий частичный положительный заряд на атоме углерода карбонильной группы, и метиленовый компонент, имеющий активированные атомы водорода в качестве катализатора В используют основание, способное отщепить протон от метиленового компонента. При этом возможно а) нуклеофильное присоединение метнленового компонента к карбонильной группе с образованием спирта, б) нуклеофильное замещение атома кислорода карбонильной группы с образованием алкена и последующее нуклеофильное присоединение к активированной кратной связи этого алкена второй молекулы метиленового компонента. В обще / виде реакцию можно изобразить следующим образом  [c.188]

    Первоначально идентичность УФ-спектров а- и -гидрокси-пйридинов со спектрами Л -метилпиридинов, которым отвечает единственная структура, позволила предположить, что в отличие от а- и у-аминопиридинов а- и у-гидроксипиридинам отвечают формулы (110) и (111). Однако впоследствии было показано, что реальным а- и у-гидроксипиридинам несвойственны реакции, характерные для карбонильной группы (они не реагируют с фенилгидразином и не присоединяют реактивов Гриньяра), а также для вторичной аминогруппы (они с трудом реагируют с СНз1 и не образуют солей четвертичных аммониевых оснований). На этом основании соединение (НО) следует скорее относить к амидам кислот, а соединение (Ш)—к ви-нилогам амидов кислот. В обоих соединениях взаимное влияние функциональных групп настолько велико, что обе они утрачивают характерные для каждой из них свойства. [c.549]

    Особенность реакции альдегидов и кетонов с СН-кислотами состоит в том, что они катализируются основаниями. Важнейнгая стадия таких реакций — превращение нейтральной молекулы реагента в анион, обладающий высокой нуклеофильной активностью и способный присоединяться к неактивированной карбонильной группе. [c.127]

    Хорошо изучена реакция альдегидов и кетонов с H N. При действии основания H N образует высоконуклеофильный цианид-ион, который и атакует карбонильную группу. Образующийся анион, реагируя с H N, превращается в продукт присоединения оксинитрил  [c.127]

    Кетоны могут замещать атом водорода при а-углероде, карбонильной группы на галоген. Реакция катализируется как основаниями, так и кислотами и достаточно активно протекаег с разтчными галогенами С1.,, Вг,, 1 . [c.88]

    Гидролиз сложных эфиров обычно катализируется как кислотами, так и основаниями. Поскольку группа 0R обладает более слабыми нуклеофугпыми свойствами, чем галогены или O OR, вода не гидролизует большинство сложных эфиров. При катализе основаниями атакующей частицей служит более сильный нуклеофил — ОН-группа. Эта реакция носит название омыления и приводит к соли кислоты. Кислоты катализируют реакцию за счет того, что положительный заряд атома углерода карбонильной группы становится больше, и, следовательно, он легче подвергается атаке нуклеофилом. Обе реакции обратимы, и поэтому практической ценностью обладают только тогда, когда равновесия удается каким-либо способом сместить вправо. А поскольку образование соли — один из таких способов, гидролиз сложных эфиров в препаративных целях почти всегда проводят в щелочных растворах, за исключением тех [c.109]

    В случае несимметричных кетонов галогенированию в первую очередь подвергается группа СН, затем группа СНа, а после этого группа СНз [86], однако часто получается смесь продуктов. В альдегидах иногда замещается атом водорода альдегидной группы (см. т. 3, реакцию 14-3). Можно также получить ди- и полиальдегиды. В условиях катализа основаниями одно а-положение кетона полностью галогенируется до того, как другое подвергнется атаке, и реакцию не удается остановить до тех пор, пока все атомы водорода при первом углероде не будут замещены (см. ниже). Если одной из групп является метил, имеет место реакция образования галоформа, или гало-формная реакция (12-43). В условиях катализа кислотами реакцию легко остановить после внедрения одного атома галогена, однако второй атом галогена можно ввести, используя избыток реагента. При хлорировании второй атом галогена обычно оказывается с той же стороны от карбонильной группы, что и первый [87], тогда как при бромировании продуктом является [c.429]

    При альдольной конденсации а-атом углерода одной молекулы альдегида или кетона присоединяется к карбонильной группе другой молекулы, [375]. Чаще всего в качестве основания используют ОН-, хотя иногда применяются и более сильные основания, например трет-бутилат алюминия. Гидроксид ион — недостаточно сильное основание, чтобы практически все молекулы альдегида или кетона можно было превратить в соответствующий енолят-ион, т. е. равновесие реакции [c.381]

    При обработке основаниями а-дикетоны дают соли а-гид-роксикислот. Эта реакция называется бензильной перегруппировкой [131]. Хотя реакция обычно осуществляется на арильных производных, ее можно применить и к алифатическим ди-кетонам и а-кетоальдегидам. Использование алкоксид-ионов вместо ОН приводит к соответствующим сложным эфирам [132], хотя алкоксид-ионы, которые быстро окисляются (такие, как 0Е1- и ОСИМег ), здесь не используют, так как они восстанавливают бензил в бензоин. Ароксид-ионы (ОАг") для этой реакции не являются достаточно сильными основаниями. Механизм перегруппировки в основном аналогичен механизмам реакций 18-1—18-4, но есть и различия. Мигрирующая группа не двигается к углероду с открытым секстетом. Углерод имеет октет, но может принять группу с парой электронов за счет смещения я-электронов связи С = 0 к кислороду. Первой стадией будет атака карбонильной группы основанием, т. е. та же стадия, что и первая стадия тетраэдрического механизма нуклеофильного замещения (т. 2, разд. 10.9) и многих случаев присоединения по связи С = 0 (т. 2, гл. 16)  [c.141]


Смотреть страницы где упоминается термин Карбонильная группа реакции с основаниями: [c.31]    [c.270]    [c.31]    [c.367]    [c.270]    [c.210]    [c.172]    [c.191]    [c.197]    [c.520]    [c.52]    [c.103]    [c.239]    [c.277]    [c.110]    [c.428]   
Введение в электронную теорию органических реакций (1965) -- [ c.244 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильная группа

Карбонильные группы реакции

Некоторые реакции карбонильных групп, катализируемые кислотами и основаниями

группа реакции



© 2024 chem21.info Реклама на сайте