Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки предсказание

    Разработка новых подходов и методов для анализа связи между структурой и свойствами и биологической активностью органических соединений, открывающих путь к эффективному планированию синтеза соединений с заданными характеристиками, является важной проблемой современной органической химии. В статье рассматриваются основные принципы методов предсказания физико-химических свойств и биологической активности химических соединений, а также дизайна новых соединений с заданными свойствами и биологической активностью, развиваемые нами новые подходы и их применение для решения конкретных задач. Основные направления работ связаны с построением регрессионных моделей и генерацией структур, использованием локальных молекулярных характеристик и искусственных нейронных сетей, молекулярным моделированием белков и лигандов. [c.112]


    Алгоритм предсказания трехмерных структур белка. Обзор основных работ, направленных на поиск эмпирических зависимостей между аминокислотными последовательностями и трехмерными структурами белков, был дан в предшествующем томе [2. Ч. II] и будет продолжен в гл. 17 этого тома. Анализ имеюш егося материала привел к следующим выводам, относящимся ко всему циклу исследований этого направления. [c.78]

    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]

    Неэффективность рассматриваемого подхода, проявляющаяся уже на уровне конформационного анализа пентапептида, предопределяет ответ на второй поставленный выше вопрос, который касается перспективности процедуры Монте Карло в предсказании нативных конформаций более сложных аминокислотных последовательностей. Практически бесконечное количество минимумов на потенциальной поверхности любого белка не оставляет надежды на решение проблемы мультиплетности исключительно на стохастической основе. Но, может быть, затруднения здесь не являются принципиальными, и такой подход, если не в состоянии привести к количественному решению, поможет понять "физическую сущность свертывания белковой цепи" Как полагают Ли и Шерага, метод Монте Карло-минимизации адекватен действительному процессу сборки белка, который, по их мнению, является Марковским процессом. Так, они пишут "Монте Карло-минимизация представляет собой одну из многих возможных процедур, реализующих гипотезу Маркова путем генерации с Больц- [c.350]


    Низкомолекулярные пептиды, в частности пептидные гормоны, как правило, наделены несколькими функциями. В этом отношении они отличаются от белков, которые, за редким исключением, монофункциональны, физиологическое действие отдельного природного пептида часто проявляется в совершенно различных системах организма и по своему характеру настолько разнообразно, что в такой сложной картине подчас трудно увидеть стимулирующее начало одного соединения и обнаружить между многими активностями пептида какую-либо связь. Несмотря на сложность функционального спектра, механизмы всех физиологических действий пептида совершенны по своей избирательности, чувствительности и эффективности. Поэтому при изучении конкретной функции возникает представление о молекулярной структуре пептида как о специально предрасположенной для выполнения только единичного рассматриваемого действия. Природным олигопептидам присуща согласованность двух на первый взгляд взаимоисключающих качеств - полифункциональности и строгой специфичности. Подход к установлению количественной зависимости между строением и биологической активностью олигопептидов, детально рассматриваемый в следующем юме монографии "Проблема белка", включает решение двух структурных задач, названных автором данной монографии [28] прямой и обратной. Прямая задача заключается в выявлении всех низкоэнергетических конформационных состояний природного олигопептида, которые потенциально, как будет показано, являются физиологически активными. Эта задача требует знания только аминокислотной последовательности молекулы и решается на основе теории и расчетного метода, использованных уже в анализе структурной организации многих олигопептидов. Обратная структурная задача по своей постановке противоположна первой. Ее назначение заключается в априорном предсказании химических модификаций природной последовательности, приводящих к таким искусственным аналогам, каждый из которых имеет пространственное строение, отвечающее конформации, актуальной лишь для одной функции исходного соединения. Конечная цель решения обратной задачи, таким образом, состоит в прогнозировании монофункциональных аналогов, которые бы только в своей совокупности воспроизводили полный набор низкоэнергетических конформаций природного пептида и весь спектр его биологического действия (подробно см. гл. 17). [c.371]

    В результате развития компьютерной технологии появились новые, эвристические подходы к решению проблем, для которых затруднено пртменение традиционных алгоритмических методов. Одним нз таких подходов является технология экспертных систем [10]. Впервые использование экспертных систем для объединения традиционных методов анализа первичных структур белков (предсказание их вторичной структуры, активных центров и т.п.) было предложе- [c.168]

    Более объективен показатель надежности эмпирических корреляций Qv, предложенный Б. Мэтьюзом [158]. Он рассчитывается по средневзвешенным значениям w, х, у, z, т.е. в нем учитываются также недопредсказания и сверхпредсказания. В выше отмеченном первом примере его значение составляет -0,17, а во втором +0,38 при максимальных изменениях от -1,0 (в случае полностью неправильных предсказаний w = х= 0) до + 1,0 (w = х = 1, у = z = 0). Таким образом, в первом примере предсказание хуже, чем среднестатистическое, беспорядочное, а во втором — несколько лучше. Значения критерия Мэтьюза для сегментов а-спиралей, -структур и -изгибов аденилаткиназы, рассчитанные по лучшим из имеющихся для этого белка предсказаниям, равны соответственно 0,56, 0,58 и 0,60, а для лизоцима Т4 —0,42, 0,28 и 0,20 [157]. [c.268]

    Пономаренко и соавт. посвящена описанию демонстрационного прототипа экспертной системы для предсказания топологической структуры белков на основе их аминокислотных последовательностей. В работе М.П. Пономаренко и Ю.Л. Орлова дано описание демонстрационного прототипа экспертной системы для быстрой оценки полезности использования произвольных характеристик биополимеров дли их классификации. Отличительной особенностью этой системы является использование нечетких эмпирических исчислений в рамках теории аддитивной полезности Сэвиджа [5]. [c.8]

    Исследования с помощью этих подходов ведутся более 20 дет. За 8ТО время получен ряд важных результатов (см., например обзор (9]), одвако окончательное решение проблемы предсказания щюстранственной структуры по аминокислотной последовательности белка до сих пор не найдено. [c.168]

    Блок предназначен для статистического анализа методов предсказания топологий белков по их аминокислотным последрвательно- [c.182]

    Всего в БЛОК заложено 15 различных эвристических правил, спользование которых позволяет проанализировать оофокий спектр Гатистических закономерностей работы ыетодов предсказания то- ологий белков по их аыинокислотныы последовательностям. Это Юзволяет быстро и эффективно исключать иэ рассмотрения беспер- ективные направления поиска статистически достоверных взаимосвязей между топологическими и первичными структурами белков. [c.185]

    Программа Р015К строит один корректный метод предсказания <шологий глобулярных белков по их аминокислотным последовате-рьностям (или делает вывод о том, что она не может этого сде- ь) не более, чем за одни сутки. [c.185]


    Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются заранее известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему У . Хотя данный метод применяют, главным образом, для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облетает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ. [c.42]

    При всех достижениях теоретического характера по предсказанию формы КД-спектров более ценным часто оказывается эмпирическое сопоставление спектров разных соединений. Например, на рис. 13-14 лриведены КД-спектры спиралей, р-структур и неупорядоченных пептидных цепей, рассчитанные из измеренных спектров в сочетании с анализом реальных структур, которые установлены с помощью рентгеновской кристаллографии [49]. Обратите внимание на глубокий минимум при 222 нм в КД-спектре а-спирали, который в случае р-структу-ры выражен значительно слабее. Для неупорядоченной структуры при этой длине волны КД почти полностью отсутствует. По глубине указанного минимума часто оценивают относительное содержание спиральных участков в белке. [c.27]

    Совр. теории р-ров П. позволяют рассчитать электростатич. потенциал вблизи заряженного полииона и эквивалентную работе, совершаемой против электрич. сил гфи диссоциации П., имеющего зада] ное пространств, расположение ионогенных групп, т. е. заданную конформацию. Большинство из этих теорий является распространение теории Дебая-Хюккеля на многозарядные полионы. Характеристики рассчитывают для полиионов определенной гео.м. формы, к-рые являются моделями реальных макромолекул Так, сферич. модели используют для предсказания св-в компактных полиионов, напр, глобулярных белков, модели цилиндров и жестких стержней для жестких макромолекул, [c.44]

    Предсказанное высокое число теоретических тарелок было измеренов заполненных гелем капиллярах для молекул ДНК. Молекулы ДНК представляют собой особый случай, так как из-за большого числа отрицательных зарядов они не вступают в обменное взаимодействие с поверхностью капилляра. С белками достигнуть такого числа тарелок не удается, хотя с покрытыми капиллярами можно получить до 10 тарелок на метр. [c.16]

    Решающую роль в создании количественного метода сыграли положения о гармонии всех внутриостаточных и межостаточных взаимодействий и их преобладающем энергетическом влиянии над взаимодействиями белковой цепи с молекулами и ионами окружающей среды. Одно из этих положений позволило разделить проблему структурной организации белка на три менее громоздкие и поддающиеся последовательному решению частные проблемы ближних, средних и дальних взаимодействий. В результате специально разработанной классификации пептидных структур на конформации, формы и шейпы стало возможным получение достоверных количественных данных о конфор-мационных состояниях целых наборов структурных вариантов различных таксономических групп, ограничившись детальным анализом их отдельных представителей. Классификация настолько сократила объем вычислительных работ, что сделала реальным расчет трехмерных структур бе лков, на первых порах низкомолекулярных. Изложенные в книге результаты априорных расчетов структур трипсинового ингибитора, сложного фрагмента нейротоксина II и большого числа олигопептидов, состоящих из десятков аминокислотных остатков, свидетельствуют об адекватном отражении предложенными теориями (бифуркационной и физической) структурной самоорганизации белков и пептидов и реальности предсказания их нативных конформаций. [c.8]

    Предположение о согласованности в нативной конформации белка всех внутримолекулярных взаимодействий открывает принципиальную возможность для поэтапного, фрагментарного подхода к решению проблемы структурной организации белковой макромолекулы. Это можно осуществить путем последовательного анализа трех видов взаимодействий, определяющих конформационное состояние каждого аминокислотного остатка в трехмерной структуре. К ним следует отнести, во-первых, взаимодействия атомов одного остатка между собой и с атомами двух смежных пептидных групп (ближние взаимодействия), во-вторых, взаимодействия остатка с соседними в последовательности остатками (средние взаимодействия) и, в-третьих, взаимодействия остатка с удаленными по цепи остатками (дальние взаимодействия) (рис. 1.1). Предложенное разделение взаимодействий до некоторой степени условно. Однакр среди возможных других оно представляется наиболее естественным и, как можно будет убедиться впоследствии, удобным с методологической точки зрения. Выделение трех видов невалентных взаимодействий (а не двух или четырех) не является полностью формальным, так как они довольно четко различаются по своим функциям в организации пространственной структуры молекулы белка. Но главное все же состоит не в способе разделения взаимодействий. Последовательное рассмотрение ближних, средних и дальних взаимодействий, как и взаимодействий, разделенных иным способом, может иметь смысл и привести к предсказанию нативной конформации белка только в том случае, если отобранные на предшествующих этапах наборы конформационных состояний аминокислотных остатков будут непременно включать состоя-Иия, удовлетворяющие условиям последующих этапов. Гарантом здесь Является постулированное в теории положение о согласованности всех видов взаимодействий валентно-несвязанных атомов в нативной конформации белка. [c.105]

    В анализе белков, однако, требовалось рассмотрение не единичных структурных вариантов элементарных звеньев (пусть и правильно предсказанных) гомополипептидов, а множества, причем не независимо, а в сочетании друг с другом. Здесь важно было не упростить расчетную модель, не выхолостить физический смысл и не свести ее к представлению о пространственной структуре белка как ансамбле регулярных канонических форм а-спиралей и (i-складчатых листов. От этого ложного шага автора предостерегли результаты исследования Д. Филлипса трехмерной структуры лизоцима [55], После миоглобина и гемоглобина он бььт третьим белком, у которого было расшифровано с помощью рентгеноструктурного анализа молекулярное пространственное строение. И если трехмерные структуры первых двух белков содержали не менее 15% а-спиральных остатков, то структура лизоцима оказалась существенно [c.108]

    Самым серьезным препятствием на пути к априорному предсказанию конформационных возможностей пептидов и белков считается проблема поиска глобального минимума энергии на многомерной потенциальной йоверхности. Решение этой проблемы должно означать появление метода, 1Соторый позволил бы рассчитывать по известной аминокислотной последовательности геометрию ее глобальной конформации из огромного, практически бесконечного количества других структурных вариантов, также состоящих из энергетически наиболее предпочтительных состояний всех аминокислотных остатков и в этом отношении, казалось бы, равновероятных. Предпринятые за последние десятилетия многочисленные попытки решить как тем или иным образом обойти проблему множественности минимумов пока не привели к цели. В настоящее время поиски в этом направлении не только не ослабевают, а, напротив, как показано ниже, продолжаются с возрастающей интенсивностью. [c.239]

    По мнению Васкеса, Немети и Шераги, "... метод приводит к хорошим результатам в расчетах коротких олигопептидов и в очень редких, особых случаях - более сложных в отсутствие дополнительной информации его применение быстро становится неконтролируемым для пептидов из 10 и более аминокислот". Далее они высказывают точку зрения принятую, но в то же время подтверждающую высказанную выше мысль об отсутствии четкого представления о структурной организации молекул пептидов и белков. Авторы пишут "Так как в самой процедуре наращивания цепи дальние взаимодействия не могут быть учтены на ранней стадии, то, следовательно, данная процедура не будет работать, когда эти взаимодействия превалируют над ближними взаимодействиями" [136. С. 2193] Тем самым допускается, что нативные конформации белков могут находиться в напряженном состоянии. Если это так, метод последовательного наращивания полипептидной цепи, как и любой другой, связанный с минимизацией энергии, в принципе бесперспективен для предсказания пространственного строения белков. [c.242]

    Метод статнстической информации. Это целое семейство процедур, в которых для отбора конформаций, служащих исходными приближениями в последующем расчете, используется разного рода вероятностная информация. Ее источником может быть банк данных белковых структур, статистическое распределение остатков на конформационных картах усредненная предпочтительность парных остаток-остаточных контактов или алгоритмы предсказаний вторичных структур [210-216]. Очевидно, данные такого рода ориентировочны и могут скорее ввести в заблуждение, чем помочь в решении структурной проблемы пептидов и тем более белков. Конформационные возможности каждого из них определяются не статистикой, а определенной и всегда уникальной аминокислотной последовательностью. Показательно в этом отношении исследование М. Ламберта и Г. Шераги [210-212] панкреатического полипептида из 36 остатков. В расчет его структуры в качестве дополнительной вероятностной информации привносятся данные о распределении значений двугранных углов основной цепи в четырех областях конформационной карты ф-ц/ и распределении конформационных состояний трипептидных сегментов на нерегулярных участках трехмерных структур белков, изученных кристаллографически. Набор исходных для оптими- [c.244]

    Можно ли выводы Ли и Шераги в отношении найденной структуры Met-энкефалина считать объективными Является ли метод Монте Карло-Минимизации перспективным для расчета нативных конформаций белков и Механизмов их сборки Адекватен ли он в принципе реальному процессу свертывания белковой цепи У самих авторов на этот счет нет сомнений. Оценивая в заключении статьи возможности предложенной процедуры, они отмечают "Применение метода Монте Карло-минимизации к свертыванию олигопептидов не только способствует пониманию физической сущности процесса свертывания белковой цепи, но также может являться эффективным алгоритмом предсказания нативных структур белка.. ..Более того, поскольку метод Монте Карло-минимизации позволяет проводить исследования крупномасштабных изменений (и белковое свертывание является лишь одним таким примером), то он может быть весьма полез- [c.349]

    Одно из главных положений теории пространственной организации белков состоит в предположении о наличии в нативных конформациях макромолекул согласованности ближних, средних и дальних взаимодействий (см. часть II). На этом утверждении строится поэтапный подход к априорному предсказанию трехмерных структур природных полипептидов, поскольку только при гармонии в белковой глобуле всех внутриостаточных и межостаточных невалентных взаимодействий атомов становится возможным и оправданным разделение конформационной проблемы белка на ряд связанных между собой менее громоздких проблем и их последовательное решение. Это же положение отражает суть термодинамической бифуркационной теории свертывания белковой цепи, объясняющей возможность, направленность и предел протекания по беспорядочно-поисковому механизму спонтанного, нелинейного неравновесного процесса сборки высокоорганизованной пространственной структуры из флуктуирующей полипептидной цепи. [c.413]

    Проанализировав существовавшие к тому времени алгоритмы предсказания (Е. Каба и Т. Ву [133-135], Б. Робсона и Р. Пейна [136, 137], П. Чоу и Г. Фасмана [138, 139], Г. Шераги и соавт. [39]), А. Бэржес и Г. Шерага констатировали, что ни один из них не может быть использован для достижения поставленной цели. Затем они переводят свою задачу в гипотетическую область и ведут поиск решения с идеальным алгоритмом предсказания. На основе известной кристаллической структуры БПТИ, а не эмпирических корреляций, авторы относят 58 аминокислотных остатков белка к 5 конформационным состояниям (а , а , е, ), отвечающим экспериментальным данным и низкоэнергетическим областям потенциальной поверхности конформационной карты p-V /. Каждому состоянию они приписывают усредненные по известным кристаллическим структурам восьми белков соответствующие значения углов ф, j/. Двугранные углы боковых цепей (%) были взяты с округлением до 5° из рентгеноструктурных данных для молекулы БПТИ. Вопреки ожиданиям оказалось, что построенная таким образом трехмерная структура даже отдаленно не напоминает конформацию белка. Ситуация не улучшилась и при минимизации энергии с учетом невалентных взаимодействий. Сравнение контурных карт расстояний между атомами С модельной и опытной конформаций показывает, что в собранной с помощью идеального алгоритма экспериментальной геометрии боковых цепей и проминимизированной трехмерной структуре отсутствуют все характерные особенности нативной конформации удалены друг от друга цистеиновые остатки, образующие между собой дисульфидные связи, практически нет намека на вторичные структуры и не воспроизводится глобулярная форма молекулы трипсинового ингибитора. Для исправления положения были введены дополнительные ограничительные условия, облегчающие приближение модельной структуры к нативной конформации. Однако ни учет реализуемой в белке системы дисульфидных связей (5-55, 14-38, 30-51), ни введение сближения соответствующих остатков ys, ни включение в расчет специальной функции, имитирующей стремление неполярных остатков оказаться внутри глобулы, а полярных выйти наружу, ничто не помогло получить пространственную форму белка, близкую к нативной. Конечно, можно было бы еще более ужесточить условия и добиться совпадения. Но это не имело бы значения, поскольку не повлияло бы на окончательный вывод о невозможности даже в случае 100%-ного правильного предсказания конформационных состояний остатков получить структуру, отдаленно напоминающую реальный белок. [c.502]

    Причину неудавшегося описания структуры Бэржес и Шерага [132] увидели в несовершенстве расчетной процедуры, которая, по их мнению, учитывала только внутриостаточные и ближние межостаточные взаимодействия. Был сделан вывод, что полученные результаты свидетельствуют о необходимости дополнить схему предсказания учетом средних и дальних взаимодействий. Авторы этой работы, как и предыдущей [131], неправы, утверждая, что в расчете игнорировались межостаточные взаимодействия среднего и дальнего порядка. Как уже упоминалось, в действительности они в неявном виде входили в расчетную модель благодаря отнесению геометрии всех аминокислотных остатков полипептидной цепи БПТИ к нативным конформационным состояниям, являющимся конечным результатом воздействия суммарного эффекта всех внутриостаточных и межостаточных контактов. В силу использования процедур, основу которых составила экспериментальная информация о трехмерных структурах белков, результаты исследований [131] и [39] в принципе не могут претендовать на дифференцированное отражение внутримолекулярных невалентных взаимодействий атомов. Таким образом, вопрос о функциональном назначении внутриостаточных и межостаточных контактов в структурной самоорганизации белковой глобулы остался без ответа по существу, он не рассматривался. [c.503]


Смотреть страницы где упоминается термин Белки предсказание: [c.517]    [c.517]    [c.117]    [c.123]    [c.125]    [c.168]    [c.168]    [c.168]    [c.176]    [c.182]    [c.186]    [c.189]    [c.191]    [c.191]    [c.193]    [c.384]    [c.245]    [c.286]    [c.326]    [c.466]    [c.483]    [c.487]    [c.488]    [c.490]    [c.502]   
Современная общая химия (1975) -- [ c.3 , c.402 ]




ПОИСК







© 2024 chem21.info Реклама на сайте