Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология водных растворов

    Технология очистки газов водными растворами метилдиэтаноламина [c.51]

    Курс Технология электрохимических производств , читаемый на соответствующих кафедрах технологических, химико-технологических и политехнических вузов, включает ряд разделов, в которых рассматриваются процессы электролиза водных растворов без выделения и с выделением металлов, электрохимического синтеза неорганических и органических веществ, электролиза расплавов, а также основы производства источников электрической энергии. Естественно, что подробное изложение этих вопросов в книге ограниченного объема невозможно, да и не требуется по учебному плану. Задачей курса является общее ознакомление студентов с процессами превращения химической энергии в электрическую (в производстве химических источников тока) и с возможными путями использования электролиза для получения различных продуктов. [c.7]


    Поэтому в дальнейшем была разработана новая технология получения ксантогенатных присадок в среде полярных органических растворителей (спирта, ацетона, метилэтилкетона). Новая технология полностью исключила из производственного процесса образование сточных вод. Отсутствие в этой технологии водных растворов ксантогенатов, агрессивных по отношению стали, в значительной степени повысило стойкость аппаратуры. И, наконец, появилась возможность увеличить на 25—28% выход присадок и повысить их качество. [c.85]

    Действие ионизирующих излучений приводит к многообразным химическим превращениям в газах, водных растворах неорганических и органических соединений, радиационным превращениям органических соединений и их смесей, интенсификации ряда технологических процессов. Эти вопросы относятся к быстроразвивающейся области химической технологии - радиационно-химической технологии. [c.173]

    Технология водных растворов [c.15]

    Разделение систем частично растворимых друг в друге веществ на практически чистые компоненты представляет большой интерес для ряда химических, гидролизных и лесохимических производств, а в технологии переработки нефти играет важную роль, при разработке схем регенерации водных растворов избирательных растворителей, например фурфурола или фенола, используемых в процессах селективной очистки масляных дистиллятов. [c.265]

    При конверсии изобутилена 88—92%, а формальдегида 60—70% избирательность образования ДМД по первому из реагентов составляет 82—85%, а по второму — 90—93%- Количество ВПП равно 6—8 кг на 100 кг ДМД. Известным недостатком технологии является повышенный расход тепла на повторную ректификацию водного раствора формальдегида. [c.709]

    Технология неводных растворов аналогична технологии водных растворов. В то же время каждая из этих стадий имеет свои особенности, обусловленные, главным образом, физико-химическими сюй-ствами растворителей. Так, при смешивании спирта с водой наблюдается контракция в результате образования спиртогидратов различного состава растворение порощков сопровождается увеличением объема раствора спиртовые растворы летучи, легко воспламеняются, требуют особых условий хранения, что следует учитывать при их приготовлении, хранении и транспортировке. Глицерин, жирные масла, масло вазелиновое, силиконы относятся к вязким растворителям, что учитывается при растворении веществ. Неводные растворы готовятся массообъемным способом при приготовлении спиртовых растворов и весовым — при приготовлении масляных и других вязких растворов. Широкая номенклатура неводных растворителей, различие их химической структуры и свойств обусловили различную растворимость в них лекарственных веществ (табл. 13.2), стабильность получаемых растворов, а также их широкое использование в медицинской практике. [c.22]


    Поскольку других сведений о технологии, применяемой на заводе фирмы Атлас Кемикл Ко , в литературе не имеется, представляет интерес рассмотреть последние патенты по гидрогенолизу углеводов, полученные этой фирмой [13, 14]. В патенте [14] описан одностадийный способ гидрогеиолиза глюкозы, инвертированной сахарозы и инвертированной мелассы (методика очистки мелассы не указана). Для гидрогеиолиза использовались концентрированные водные растворы углеводов (преимущественно 50%-ные растворы). Применена батарея из 3—5 последовательно соединенных реакторов емкостью 10 дм каждый с соотношением высоты к диаметру 22. Специально оговорено, что гидрогенолиз можно проводить и в одном реакторе, но процесс более эффективно проходит в батарее из 3—4 реакторов. [c.102]

    Для выбора рациональной технологии очистки газа от сероводорода нами испытано несколько методов с использованием в качестве поглотителей сероводорода девонской воды, водных растворов аммиака, каустической соды, моноэтаноламина, хлорного железа, окиси железа, гидрата окиси железа. [c.27]

    Ш.Шахпаронов М.И. и др. Молекулярное движение и строение воды и водных растворов//Химия и технология воды. 1980. Т. [c.189]

    Хемосорбционные методы. Очистка газов водными растворами этаноламинов. При подготовке различных технолог [с-ских газов к переработке (в частности, пирогаза к разделению) используют хемосорбцию диоксида углерода этаполамицамн. [c.48]

    В литературе имеются весьма противоречивые данные о влиянии условии термообработки алюмоплатиновых катализаторов на их активность в реакции изомеризации, что связано с различными способами их приготовления и испытания в связи с зткм зтот вопрос бьш специально изучен. Гидроксид алюминия (бемит), получаемый синтетически, содержит до 80% воды. После сушки при 110-130 °С содержание воды уменьшается до =6,5%. Для получения каталитически активного у-оксида алюминия он должен быть подвергнут прокаливанию при определенной температуре. Результаты испытания в реакции изомеризации н-пентана платиновых катализаторов, приготовленных на основе гидроксида алюминия, содержащего фтор и прокаленного при различных температурах, показали, что с увеличением температуры прокаливания от 130 до 650 °С их каталитическая активность проходит через максимум, который соответствует температуре 500 °С (табл. 2.4). По технологии приготовления катализатора оксид алюминия после прокаливания подвергается гидратации при погружении в водный раствор НгРсС] отсюда вытекает необходимость вторичной термической обработки катализатора для удаления из него воды. [c.50]

    Растворимость в воде и гидролитическая стабильность. Большинство антиоксидантов имеет низкую растворимость в воде. Однако некоторые производные п-фенилендиамина имеют высокую растворимость в водных растворах минеральных и органических кислот (например, некоторые алкилфенилзамещенные и ди-алкилпроизводные). Это необходимо учитывать при разработке технологии промывки и водной дегазации каучуков. Необходимо также учитывать, что некоторые производные фенолов имеют повышенную растворимость в водных растворах щелочей. Гидролитическая стабильность является очень важным показателем при выборе антиоксидантов. Как правило, все наиболее распространенные антиоксиданты при умеренных температурах и в нейтральных средах гидролитически стабильны. Вместе с тем, если в молекуле антиоксиданта имеются определенные группировки атомов (напри-мер, сложноэфирные группы), то в условиях контакта с водой (при определенных значениях pH и повышенных температурах) может наблюдаться гидролиз антиоксидантов. В результате может произойти потеря антиоксидантом свойств ингибитора цепных [c.645]

    Говоря о перспективах усовершенствования диоксанового синтеза, целесообразно остановиться на отработанном в опытно-промышленном масштабе (опытный цех Ефремовского завода) варианте технологии синтеза ДМД с использованием в качестве сырья высококонцентрированного газообразного формальдегида. Полезность такого приема станет очевидной, если принять во внимание, что при использовании формальдегида в виде35—40%-ного водного раствора приходится пропускать через всю систему синтеза ДМД значительные количества воды, которая, пройдя реакторы, загрязняется большим количеством трудноудаляемых органических веществ (ВПП, формальдегид и т. д.) и минеральных солей. [c.708]

    Для последующих опытов все катализаторы были изготовлены путем нанесения фталоцианинов кобальта ич О %-ного водного раствора едкого натра на активированные угли. Для выбора марки угля, наиболее полно удовлетворяющего требованиям технологии по адсорбционной способности и активности в реакции окисления меркаптанов, были проведены исследования процесса насыщения ИВКАЗом и по.чифталоцианином кобальта различных углей. На рис.3.6 приведены кинетические кривые насын ения фталоцианином кобальта различных углей. В таблице 3.7 представлены результаты исследования каталитической активности гетерогенных катализаторов в реакции окисления н-додецилмеркаптана молекулярным кислородом. [c.67]


    ЛИОТРОПНЫЕ РЯДЫ — ряды, в которых ионы последовательно располагаются по величине их влияния на свойства растворителя в растворе или дисперсионной среды в дисперсной системе. Например, Л. р. ионов, размещенных по их возрастающему влиянию на вязкость и поверхностное натяжение Еодных растворов, на растворимость в воде, на набухание высокомолекулярных веществ (белков, пектинов, агар-агара, крахмала и др.), на застудневание водных растворов таких веществ, а также их высаливание из растворов и т. д. Расположение ионов в Л. р. зависит от их способности связывать воду, которую они отнимают от гидратированных молекул, растворенного вещества или частиц дисперсной фазы. Наиболее изучен ряд неорганических анионов SQ2-, F-, 107, Br0 , l-, 10J-, Вг- <0 и т.д., менее четко выражено отличие в Л. р. однозарядных Li+, Na+, К" , Rb+ и двузарядных Mg +, a +, Sг , Ba + катионов. Впервые Л. р. по высаливаншо яичного альбумина натриевыми солями различных кислот был установлен R 1888 г. Г. Гофмейстером. Процессы ьысаливания имеют большое практическое значение в технологии многих производств. [c.148]

    Изотермы поверхностного натяжения водных растворов НОК и КС на границе с дегазированной нефтью Кудиновского и Мелекесского месторождений Волгоградской области приведены на рис. 31. Сравнение с реагентом ОП-Ю показывает, что для достижения адекватного снижения межфазного натяжения на границе с вытесняемой нефтью водные растворы НОК и КС должны быть концентрированнее. Снижение а системы вода — кудиновская нефть в три раза обеспечивается 0,15 %-ной концентрацией ОП-10 и 1 %-ной концентрацией КС. Использование НОК и КС требует организации крупномасштабной технологии транспорта и закачки. [c.80]

    Газовая промышленость, 1992, № 12 (испытания технологии экстракционной очистки водных растворов аминов). [c.96]

    ТатНИПИнефть усовершенствовал эту технологию [19] (рис. 4.28). Кислый газ I под давлением не менее 0,15 МПа поступает через трубчатый распределитель в куб абсорбера 1 специальной конструкции, заполненный абсорбентом V (водный раствор комплексоната железа и этилеидиаминтетрауксусной кислоты). [c.138]

    В технологии газопереработки абсорбциопная осушка газа концентрированными водными растворами ди- или триэтиленгликоля является основным методом. При этом остаточная влажность (точка росы) газа на выходе из гликолевой колонны (абсорбер) зависит от влагосодержания гликоля, поступающего в аппарат. [c.56]

    На практике очистки промышленных сточных вод имеет большое значение кристаллогидратный метод деминерализации. Крис-таллогидратная технология преследует разделение водных систем на рассол и воду. Кристаллогидратный процесс состоит в контактировании любого водного раствора с гидратообразующим агентом-М (пропан, хлор, фреоны, СО2 и др.), который извлекает из систе- [c.234]

    Разработаны схема непрерывного, полностью автоматизированного процесса сульфирования масел газообразным серным ангидридом в жидком сернистом ангидриде [а. с. СССР 138615 2, с. 141 21, с. 139] пособ получения эффективных сульфонатных присадок при использовании водного раствора нитрата кальция для нейтрализации. сульфокислот промышленная технология высокощелочных присадок НГ-102 и НГ-104 с большей моющей способностью и предложен способ получения присадки НГ-104, обладающей высокими моющими и диспергирующими свойствами и хорошей стабильностью при длительном хранении масла [15, с. 69]. Во ВНИИ НП разработан высокозольный сульфонат (присадка ПМС) с 3,5—5-кратным избытком металла против стехио-метрического количества [1, с. 158 с. 145], создан процесс сульфирования масла газообразным серным ангидридом в пленочном роторном сульфураторе непрерывного действия, ранее применявшемся для сульфирования синтетических алкилбензолов. Бутков, Филиппов и Барабанов [1, с. 95] разработали способ получения магнийсульфоносульфонатной присадки ВНИИ НП-121 путем предварительного окисления масла М-11 из сернистых нефтей. Авторами составлен ряд товарных композиций с использованием этой присадки такие композиции можно добавлять к маслам различных групп для карбюраторных и дизельных двигателей. [c.68]

    Технология синтеза аминов из хлорпроизводных. Реакцию хлорп оизводных с аммиаком и аминами можно осуществить как в жидюй фазе, применяя водные растворы аммиака, так и в газовой--с безводным аммиаком. В подавляющем большинстве случаев используется жидкофазный процесс. [c.277]

    Технология двухстадийного синтеза изопрена. Упрощенная технологическая схема получения изопрена из изобутиленовой фракции и формальдегида изображена на рис. 161. Первую стадию проводят в двух трубчатых реакторах 1 и 2, охлаждаемых водой. Изо-бутиленовая фракция и разбавленный рециркулятом водный раствор 4ормальдегида движутся в них противотоком более тяжелый, водный слой опускается вниз, а легкий, углеводородный поднимается вверх, причем диспергирование жидкостей позволяет создать [c.557]

    Конструкция смесителя обеспечивает проведение основного процесса без дополнительного гидравлического сопротивления потоку, выходящему из реактора. Использование на ряде установок водного раствора щелочи для нейтрализации кислых компонентов дымовых газов приводит к излишнему расходу NaOH, так как вместе с оксидами серы поглощается и диоксид углерода. В современной технологии гидроксид натрия заменен карбонатом натрия. [c.106]

    В качестве растворителя для карбамида применяют воду или водные растворы низших спиртов, а для нефтяных фракций (в частности, для уменьшения их вязкости)— углеводороды, галогеналкилы, кетоны. Если по технологии желательно иметь гомогенную жидкую смесь, то используют спирты и кетоны. изостроения (изопропиловый спирт, изобутн-ловый спирт, метилизобутилкетон и т. д.). [c.316]

    Технология промышленных установок карбамидной депарафинизации отличается большим разнообразием. На рис. 5.24 изображена технологическая схема одного из заводов ФРГ по депарафинизации дизельных топлив и масел. Сырье вместе с растворителем — хлористым метиленом — и водным раствором карбамида поступает в реактор Я-/. Легкокипящий хлористый метилен одновременно выполняет функции хладагента, который, испаряясь, поглощает теплоту реакции. Температура реакции поддерживается на уровне 30—45 С. Образующийся комплекс представляет собой сферические зерна диаметром 1— 10 мм. Вместо активатора применяется затравка из реакционной массы. Продукты реакции направляются на фильтр Ф-1. Забивка трубопроводов кристал- [c.318]

    Говоря О перспективах усовершенствования диоксанового синтеза, целесообразно остановиться на варианте технологии синтеза ДМД с использованием в качестве сырья высококонцентрированного формальдегида. При использовании 35— 40% водного раствора формальдегида через всю систему синтеза ДМД пропускаются довольно значительные количества воды, которая к тому же, пройдя реактор, загрязняется трудноудаляемыми органическими веществами (ВПП, формальдегидом и т. д.) и минеральными солями. Очевидно, что применение высококонцентрированного формальдегида может полностью исключать необходимость последней операции. Высококонцентрированный формальдегид может получаться как в виде газообразного, так и жидкого продукта. Газообразный формальдегид с концентрацией не ниже 90% образуется при парциальной конденсации паров обезметаноленного формалина. Жидкий продукт получается путем вакуумной ректификации формалина. Для синтеза ДМД предпочтительно, по-видимому, использовать жидкий продукт. [c.375]

    Проблема создания высокопроизводительных водородных установок ставит одной из своих ак-туалъных задач разработку эффектшзных методов очистки технологических газов от двуокиси углерода. С точки зрения практического применения наибольший интерес в этом отношении представляет задача усовершенствования существующих,став-шлх классическими способов очистки, таких как очистка водой под давлением, водными растворами этаноламинов и промывка горячем раствором карбоната калия. Целесообразность и основные принципиальные решения данного направления выявлены при исследовании технологии поташного метода очистки, разработанной фирмой Лурги и осуществленной на Уфимском нефтеперерабатывающем заводе им. ХХП съезда КПСС. Анализ работы установки показал, что задача уссвершенствова- [c.155]

    При каталитическом риформинге серосодержащие соединения практически полностью реагируют с водородом, содержащимся в циркулирующем водородсодержащём газе, образуя сероводород и соответствующий углеводород. Сероводород частично растворяется в продуктах риформинга и выводится из системы, однако большая его часть переходит в циркулирующий газ и постепенно накапливается в нем. Поэтому защита платинового, катализатора от отравления сероводородом является одной из важнейших проблем технологии и экономики риформинга на алюмоплатиновол катализаторе. Для защиты этих катализаторов от сернистых соединений ранее использовали два способа удалёние сероводорода из циркулирующего газа абсорбцией водным раствором моноэтаноламина (МЭА) и снижение содержания серы в сырье риформинга его гидроочисткой. Первый способ применяли при меньшем содержании серы в сырье (от 0,01 до 0,07% масс.), второй — при более высоком ее содержании. [c.143]

    Туманова T. A., Григор T. T., Шаланки Л. Взаимодействие хлорноватистой кислоты с глюкозой в водном растворе при температуре 25 и 50 С // Тр. Ленингр, технолог, ин-та целлюлозно- [c.155]

    Современную технологию этого процесса можно показать на примере производства цианистого водорода из коксового газа, обогащенного метаном [7]. Содержание метана в газе было увеличено за счет гидрирования части окиси углерода, присутствующей в том же газе. Смесь газов, которую вводили в реактор, содержала 12—13% метана, 11 —12% аммиака и остальное — главным образом сухой воздух. Катализатором служила платинородиевая сетка. Процесс проводили при 1000°. Выходящие из реактора газы, содержавшие около 8% цианистого водорода, немгдленно охлаждали до 150°, после чего непрореапфсвавший аммиак удаляли промывкой водным раствором кислого сульфата аммония. Освобожденные от аммиака газы промывали водой, охлажденной до 5°, и получали 3%-ный раствор синильной кислоты, перегонка которого давала 100%-ный цианистый водород. Выход цианистого водорода равнялся 70%, считая на метан, и 60%, считая на аммиак. Вместо того чтобы улавливать непрореагировавший аммиак в [c.376]

    В химической технологии экстракция из растворов экстрагентами более распространена, чем экстракция из твердых тел. Экстракция из твердых веществ или квазитвердых материалов (например, из тканей растительного сырья) применяется главным образом в лесохимической, пищевой и фармацевтической промышленности. В химической технологии используют в основном экстракцию из твердых пористых веществ водой или водными растворами кислот и щелочей (процессы выщелачивания). [c.520]

    Составу, отвечающему точке К на фазовой диаграмме, соответствует самая низкая температура начала замерзания раствора. Ее называют криогидратной точкой (ср. с эвтектической точкой в сплавах). Координаты криогидратной точки зависят от природы соли. Соли с низкотемпературными криогидратными точками применяют в технологии для приготовления хладагентов — жидкостей с низкой температурой замерзания и большой теплоемкостью. Так, 22,4 %-ный водный раствор Na l замерзает при —21,2 С, 21,6%-ный Mg la при —33,6 С, 30,22%-ный a l при —49,8 С. [c.199]


Библиография для Технология водных растворов: [c.49]   
Смотреть страницы где упоминается термин Технология водных растворов: [c.21]    [c.7]    [c.129]    [c.158]    [c.70]    [c.147]    [c.25]    [c.135]    [c.148]    [c.303]    [c.179]    [c.173]   
Смотреть главы в:

Фармацевтические и медико-биологические аспекты лекарств Т.2 -> Технология водных растворов




ПОИСК







© 2025 chem21.info Реклама на сайте