Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колонны коэффициент массопередачи

    Наиболее полные экспериментальные исследования процесса массообмена в полых распылительных скрубберах было проведено Фиалковым с соавторами [363, 367-371]. Целью исследований был подбор типа форсунок и их расположение в колонне, величина плотности орошения и скорости воздуха при условии ограниченного гидравлического сопротивления аппарата, а также получение эмпирической формулы для расчета скруббера. Проводилась очистка воздуха от HF, СЬ, SOj водой, содовым и щелочными растворами и растворами кислот. При обработке экспериментальных данных определялся объемный коэффициент массопередачи -К а эквивалентного колонного аппарата, работающего в режиме идеального вытеснения при постоянстве по высоте колонны. При этом предполагалось, что равновесная концентрация с на границе раздела газ—жидкость равна нулю. Это допущение применимо лишь для очень хорошо растворимых газов. В соответствии с уравнением (5.4) экспериментальное значение объемного коэффициента массопередачи рассчитьшалось по формуле [c.250]


    Для колец внавал при достаточно хорошем распределении орошения (число точек орошения более 50 на 1 м сечения колонны) коэффициент массопередачи мало зависит от высоты насадки. При меньшем числе точек орошения коэффициенты массопередачи заметно возрастают с увеличением высоты насадки, что свидетельствует о растекании жидкости и улучшении ее распределения с ростом высоты. [c.429]

Рис. 5.8. Зависимость объемного коэффициента массопередачи от скорости газа в колонне 1 Рис. 5.8. <a href="/info/26365">Зависимость объемного коэффициента</a> массопередачи от <a href="/info/14013">скорости газа</a> в колонне 1
    Как ВИДНО из данных табл. 4-6, при уменьшении высоты колонны коэффициент массопередачи не проявляет тенденции к увеличению. [c.109]

    Понятие ВЕП было введено в свое время в связи с тем, что величина ВВП, в отличие от объемного коэффициента массопередачи, мало зависит от объемных расходов фаз. Это дает возможность сравнивать эффективность различных колонн и различных процессов по абсолютной величине ВЕП, например в метрах, вне зависимости от режимных параметров. [c.220]

    Заполнение колонны неупорядоченной насадкой не приводит к значительному изменению скорости массопереноса в сплошной фазе. При расчете коэффициентов массопередачи в сплошной фазе применительно к колоннам с крупной насадкой удовлетворительные результаты дает использование формул, которые были получены для расчета массопереноса в распылительных и барботажных колоннах. [c.269]

    Если целевым назначением аппарата является извлечение или насыщение по сплошной фазе, то высота колонны, необходимая для достижения заданной степени насыщения, уменьшается с уменьшением С. В отличие от извлечения из дисперсной фазы, в данном случае 2 0 при С— О, что формально следует из формулы (5.37). Физически это связано с тем, что при заданном расходе сплошной фазы уменьшению С соответствует увеличение Кд при этом возрастает не только средняя движущая сила процесса, но и поверхность контакта фаз и, следовательно, объемный коэффициент массопередачи. [c.224]

    Расчет концентрационного профиля в массообменной колонне необходим для следующих целей а) для проверки экспериментальных (или теоретических) значений параметров продольного перемешивания (Ре и Ре ) и массопередачи Т или коэффициента массопередачи) путем сопоставления расчетного профиля с опытным б) для одновременного определения по экспериментальным профилям концентраций параметров продольного перемешивания и массопередачи [233—235] в) для определения точки (сечения) ввода в колонну дополнительного потока одной из фаз с концентрацией, отличающейся от исходной. [c.230]


    Изложенным методом определяется коэффициент массопередачи, усредненный по колонне, что в некоторой степени может сказаться и на расчетных значениях параметров продольного перемешивания. [c.244]

    В настоящее время нет достаточно надежных данных для определения поверхности контакта фаз, а особенно — эффективной поверхности массопередачи при барботаже на тарелках. Поэтому обычно в расчетах тарельчатых колонн используют коэффициенты массопередачи, отнесенные к единице рабочей площади тарелки (Ку/). [c.132]

    РАСЧЕТ КОЭФФИЦИЕНТОВ МАССОПЕРЕДАЧИ И ВЫСОТЫ КОЛОННЫ [c.132]

    Н — высота рабочей зоны колонны кг/м 9 К — коэффициент массопередачи  [c.136]

    Формулы (13.15), (13.28) и (13.36) позволяют моделировать тарельчатый аппарат в тех случаях, когда по каким-нибудь причинам прямой расчет коэффициентов массопередачи не может быть осуществлен и мы не можем рассчитывать тарельчатую колонну как каскад распылительных колонн. Эти формулы практически представляют собой формулы аддитивности массопередачи в секционном реакторе и позволяют, проводя эксперименты на малой модели (одна секция), переходить к многосекционному аппарату. [c.257]

    Пусть экстракция проводится в противоточной вертикальной колонне, причем растворитель и р финат взаимно нерастворимы. Будем считать, что коэффициент массопередачи постоянен по всей высоте экстракционной колонны. [c.90]

    Объемные коэффициенты массопередачи Ка и значения высоты единицы переноса Лд в колоннах этого типа обобщены для некоторых систем по упрощенным уравнениям (4-25), (4-26), (4-29) и (4-30). Характер этих зависимостей подобен для всех скоррелированных систем, поэтому ограничимся рассмотрением диаграмм на рис. 4-3 и 4-4, на которых показана зависимость объемных коэффициентов [c.312]

    Вначале концевые эффекты объясняли интенсивным массооб-меном, вызванным турбулизацией потоков в месте их входа в аппарат. Позднее [206] эти эффекты были объяснены продольным перемешиванием сплошной фазы. Оказалось [204], что экспериментальный профиль концентраций в распылительных колоннах располагается между расчетными профилями концентраций в. режимах идеального перемешивания и идеального вытеснений.. Расчеты показали, что модели идеального перемешивания соответствует наибольший концевой эффект, постепенно убывающий при переходе к поршневому потоку. Таким образом, концевой эффекту входа сплошной фазы в колонну не является следствием большого локального коэффициента массопередачи, а обусловлен конвективными потоками, не учитываемыми моделью идеального вытеснения. В результате из-за снижения движущей силы процесса уменьшается интенсивность межфазного массо- или теплообмена. [c.201]

Рис. 4-13. Влияние скорости сплошной фазы на объемный коэффициент массопередачи при экстракции уксусной кислоты из воды бензолом (колонна диаметром 90 мм с насадкой) Рис. 4-13. <a href="/info/231180">Влияние скорости</a> <a href="/info/8992">сплошной фазы</a> на <a href="/info/30503">объемный коэффициент массопередачи</a> при <a href="/info/231069">экстракции уксусной кислоты</a> из <a href="/info/48349">воды бензолом</a> (<a href="/info/63194">колонна диаметром</a> 90 мм с насадкой)
    В верхней я иижпей частях колонны в местах ввода сплошной и дисперсной фаз значение коэффициента массопередачи достигает наибольшего значения. Для различных высот остальной части колонны коэффициент массопередачи имел сравнительно постоянное значение, немного уменьшаясь к нижней части колонпы. [c.205]

    Коэффициенты массопередач по всей высоте экстракционной колонны имели постоянную величину, за исключением тех небольших участков колонны, где вводится сплошная фаза — подсмоль-ная вода. Для этого участка колонны коэффициент массопередачи имеет наибольшее значение. Это явление, по-видимому, объясняется рециркуляцией растворителя и, следовательно, увеличением продолжительности контакта фаз. [c.212]

    Иное объяснение больших значений концевого эффекта, определяемого методом экстраполяции на нулевую высоту колонны, при малых временах каплеобразования предложено в работах [326, 327]. Считается, что при малых временах каплеобразования количество экстрагированного каплей вещества невелико и, следовательно, истинный концевой эффект иезначителен. Большие значения концевого эффекта, полученные методом экстраполяции на нулевую высоту колонны, могут иметь место только при лимитирующем сопротивлении дисперсной фазы. В этом случае вследствие нестационарности процесса переноса коэффициент массопередачи значительно возрастает при малых временах контакта фаз (см. раздел 4.3), а степень извлечения уменьшается более круто, чем на основном участке, приближаясь к истинному малому значению концевого эффекта в месте отрьша капли. Поэтому линейная экстраполяция на нулевую высоту колонны приводит к кажущемуся значению концевого эффекта, существенно превышающему истинное значение. [c.210]


    На рис. 4.16 и 4.17 представлены зависимости степени извлечения (насыщения) от высоты колонны, построенные по экспериментальным данным [327], полученным при малых временах образования капли. Для систем с лимитирующим сопротивлением в сплопшой фазе коэффициент массопередачи не зависит от времени и линейная экстраполяция допустима (рис. 4.16). Однако при лимитирующем сопротивлении дисперсной фазы, как следует из рис. 4.17, кажущийся концевой эффект, найденный экстраполяцией отточкиЯ=12 см, зависит от диаметра капель и равен 52 35 и 25 % для капель диаметром 0,14 0,19 и 0,28 см, соответственно. Характерным является отклонение экспериментальных точек на малых высотах колонны от экстраполяционной кривой в сторону меньших значений степени насьпцения. Из этого следует, что истинные значения концевого эффекта существенно меньше полученных методом линейной экстраполяции. [c.211]

    Из многочисленных экспериментальных данных известно, что в распылительных, насадочных и тарельчатых колоннах объемный коэффициент массопередачи линейно возрастает с увеличением скорости подачи дисперсной фазы Кд в широком диапазоне изменения последней. Линейная зависимость лго от Кд может наблюдаться, например, в том сл)Д1ае, когда размеры капель и скорость их подъема не зависят от Кд, что подтверждается при небольших значениях удерживающей способности (УС) прямыми экспериментами по фотографированию капель. В этом случае коэффициент массопередачи к не зависит от Кд, а величина удельной межфазной поверхности раздела а, пропорциональная числу капель в единице объема, линейно возрастает с увеличением Гд. Однако линейная зависимость ко от Гд может иметь место не только в этом частном случае, но и тогда, когда возрастание а компенсируется уменьшением к. В связи с этим в работах [349-351 ] нами было предложено использовать для расчета скорости массопередачи и высоты колонны приведенные коэффициенты массопередачи [c.220]

    В предьщущих разделах рассматривался массотеплообмен для постоянных по высоте колонны значениях коэффиплента распределения, коэффициента массопередачи, удельной поверхности контакта фаз и скоростей подачи сплошной и дисперсной фаз. Эти методы применимы как для моно дисперсных потоков, так и для пленочных течений. [c.242]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    При изучении массообмена, осложненного химическими реакциями как в дисперсной, так и в сплошной фазах в колонных аппаратах,ограничимся рассмотрением сравнительно небольших задержек дисперсной фазы, не превышающих 15 %. В гл. 6 были приведены экспериментальные данные, согласно которым при задержке дисперсной фазы менее 15 % измеренные величины коэффициентов массопередачи в единичные капли и в стесненном потоке в пределах разброса опьггных данных совпадают. Поэтому при вьшоде уравнений массообмена в колонных аппаратах мы не будем учитьшать стесненность потока. Отметим, что в подавляющем большинстве абсорбционных, экстракционных и теплообменных колонных аппаратов с дисперсной фазой задержка дисперсной фазы не превьппает указанной величины. [c.299]

    У111-8. Изучался процесс сушки воздуха в псевдоожиженном слое силикагеля, находящегося в колонне с поперечным сечением 0,372 ж. Средний размер частиц 3,68 мм, что соответствует наружной поверхности 918 м м . Коэффициент массопередачи зависит от высоты слоя, но в интервале 0,15— 0,3 м его значение равно  [c.302]

    В принципе возможен следующий путь масштабирования колонных аппаратов. На основе физической модели структуры потоков в аппарате данной (конструкции и результатов зкаперименталь-ного исследования его ла(бораторного или укрупненного образца получают зависимости для оценки Еп в промышленном аппарате. Расчет аппарата с учетом кинетических (коэффициенты массопередачи, константы скорости реакции) и найденных гидродинамических ( п) параметров процесса является достаточно надежным. [c.253]

    Онда К-,Нагасава М.,Такахаси М., Кагаку когаку, 31, 716 (1967). Коэффициенты массопередачи в насадочной колонне при абсорбции, сопровождаемой химической реакцией второго порядка. [c.277]

    Для расчета высоты массообмеиных колонн необходимо знать коэффициенты массопередачи или общие высоты единиц переноса, или общие числа единнц переноса. Эти параметры рассчитывают по уравне- [c.51]

    Коэффициенты массоотдач , рассчитанные по средним значениям скоростей л физических свойств паровой и жидкой фаз, постсянны для верхней и нижней частей колонны. В то же время коэффициент массопередачи — величина переменная, зависящая от кривизны линии равновесия, т. е. от коэффициента распределения. Поэтому для определения данных, по которым строится кинетическая линия, необходимо вычислить несколько значений коэффициентов массопередачи в интервале изменения состава жидкости от д v7 ДС Хр. Ниже дан пример расчета для определения координат одной точки кинетической линии. [c.133]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    Изучение скорости массо- и теплообмена в насадочных колоннах являлось объектом многочисленных исследований [82—86]. Однако сопоставлепие критериальных уравнений, полученных различными авторами, не давало [87—89] оснований для оптимизма. Тем пе менее накопленпе эксперпментального материала позволило установить ряд закономерностей, характеризующих процессы переноса в насадочных колоннах. Прежде всего, интерес вызывали данные о квазпстацпопарном характере массопередачи в насадочной колонне [89—93]. Увеличение высоты слоя насадки практически пе оказывало влияния на величину коэффициента массопередачи. Наряду с этим известно, что увеличение времени пребывания дисперсной фазы в колонне при заполнении ее насадкой также не приводит к снижению коэффициента массопередачи [94] при лимитирующем сопротивлении дисперсной фазы. Массопередача в дисперсной фазе может иметь квазистационарный характер при условии, что суммарный процесс массопередачи аддитивно складывается из ряда самостоятельных процессов подобно процессу в тарельчатой колонне. [c.266]

    Установлено, что слишком большие скорости движения жидкостей приводят к ухудшению массообмена, поэтому во многих случаях может оказаться выгодным увеличение скорости только одной фазы. При увеличении количества диспергированной фазы размеры капель и скорость их отстаивания остаются вначале без изменений, количество же капель в колонне возрастает, следовательно увеличивается поверхность контакта и улучшается объемный массообмен. Если количество диспергированной фазы превышает некоторый предел, массообмен ухудшается. Это происходит в связи с тем, что при больших нагрузках и слишком больших скоростях истечения из отверстий распылителя капли имеют неодинаковые размеры и, соответственно, разную скорость, в результате чего часто сталкиваются и сливаются (т. е. уменьшается поверхность контакта). Если истечение жидкости из распылителя происходит нормально, то увеличение количества диспергированной фазы приводит в конце концов к захлебыванию колонны. Влияние количества диспергированной фазы тем заметнее, чем меньше диаметры отверстий для истечения. Подобные зависимости существуют и для сплошной фазы. При увеличении количества последней уменьшается скорость отстаива- / ния капель, увеличивается удерживающая способность, в этих условиях массообмен улучшается. При больших количествах сплошной фазы мелкие капли могут слиться в крупные, которые отстаиваются скорее, что уменьшает удерживающую способность и поверхность контакта и снижает коэффициенты массопередачи. [c.309]

    Диаметр колонны оказывает влияние на массообмен (объемный коэффициент массопередачи), главным образом, в связи с влиянием стенки и каналообразованием, вызванным неравномерностью расположения элементов насадки. При увеличении диаметра колонны влияние стенки исчезает и элементы насадки располагаюгся более равномерно. Поэтому результаты работы больших колонн в некоторых случаях могут быть лучше, чем малых, а в некоторых—хуже. Результаты исследований, впрочем немногочисленных, подтверждают эти выводы. При экстракции пищевых жиров фурфуролом в колоннах диаметром 50, 560 и 1600 мм [59] на двух болььчих колоннах был получен одинаковый к. п. д., в то время как у колонны диаметром 50 мм объемный коэффициент массообмена оказался гораздо хуже. В качестве насадки использовались кольца Рашига одинаковых размеров. Влияние диаметра колонны установлено также для системы вода—диэтиламин—толуол в колоннах диаметром 76, 101 и 152 мм. Результаты этих исследований [81] при насадке из колец Рашига диаметром 12,7 мм и выше приведены на рис. 4-12, где показана зависимость высоты единицы массопереноса для воды (ось ординат) при постоянных размерах насадки от отношения расхода потоков [c.329]

    Зависимость массообмена от скорости фаз обнаруживает такой же характер, как в незаполненных колоннах, и кор-релируется также через отношение этих скоростей (табл. 4-2). На рис. 4-13 дана диаграмма зависимости объемных коэффициентов массопередачи Ка. от скорости сплошной фазы для колец Рашига диаметром 12,7 мм. Диаграмма составлена для системы вода—уксусная кислота—бензол [121]. Кривые /, 2, 4 относятся к диспергированному бензолу при разных скоростях и насадках. В этом случае кривые соответствуют зависимости Кц а 1 и и имеют максимум, т. е. их характер такой же, как и части кривых на рис. 4-4 для незаполненных колонн (распылительных). Максимум появляется при значительно меньших скоростях, чём следует из диаграммы 4-5. Крутой наклон кривых говорит о том, что колонны с насадкой очень чувствительны к изменениям скоростей обеих фаз и достаточно даже относительно малых скоростей для суш,ественного увеличения удерживающей способности (ветвь кривой до максимума), а также к слиянию капель (ветвь после максимума). Кривая 3 относится к случаю, в котором диспергированная фаза—вода и Кса=[ и,.). Вода хорошо смачивает керамические кольца и стекает по ним пленкой. Эта система очень малочувствительна к повышению скорости сплошной фазы, так как в этом случае изменение удерживающей способности незначительно. Кроме того, массообмен здесь хуже, так [c.330]

    Практика оптимального про ктирования ХТС показывает, что использование технологических критериев эффективности позволяет исключить из дальнейшего рассмотрения существенную часть альтернативных вариантов проектируемой ХТС как весьма далеких от оптимальных. Обычно технологические критерии эффективности дают возможность найти оптимальный вариант на самых низших иерархических уровнях ХТС тем самым значительно сокращается число вариантов, которые участвуют в принятии решений на более высоких уровнях иерархии. Та , например, при выборе типа аппаратурного оформления ступени контакта для мас-сообменного аппарата ХТС при прочих равных условиях отдают предпочтение типу ступени контакта, с большим коэффициентом массопередачи, который в этом случае представляет собой технологический критерий эффективности элемента ХТС. При заданном числе теоретических ступеней контакта в ректификационной колонне место ввода питания выбирают таким образом, чтобы оно обеспечивало наилучшее качество продуктов разделения, которое здесь также играет роль технологического критерия эффективности. [c.31]


Смотреть страницы где упоминается термин Колонны коэффициент массопередачи: [c.184]    [c.212]    [c.187]    [c.256]    [c.206]    [c.237]    [c.252]    [c.253]    [c.254]    [c.258]    [c.317]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент массопередачи

Коэффициенты колонны

Массопередача

Массопередача массопередачи



© 2024 chem21.info Реклама на сайте