Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции химические второго порядка

    Все химические реакции формально делятся на реакции нулевого, первого, второго порядка и т. д. По тому, как фактически идет процесс, т. е. сколько молекул участвует одновременно в элементарном акте реакции, различают истинный порядок реакции молекулярный, бимолекулярный и т. д. Формально порядок определяется суммой всех показателей степеней концентраций в выражении закона действия масс щ + п + Пз +. -. + Пк. [c.289]


    При изучении кинетики химических реакций часто приходится решать задачу определения порядка реакции по отдельным компонентам или порядка реакции в целом. В 2 настоящей главы приведен ряд соотношений, позволяющих определить, соответствует ли кинетическая кривая закону реакций первого, второго или третьего порядка. Однако, чтобы использовать эти соотношения, необходимо последовательно подставлять в них экспериментальные данные и выбирать, какое из соотношений выполняется. Кроме того, этот прием ничего не дает в случае, если порядок реакции превышает третий или является дробным. [c.219]

    Порядок реакции. Порядок химической реакции определяется по в ду кинетического уравнения. Он равен сумме степеней концентраций в таком уравнении. По этому признаку реакции под разделяются на реакции первого, второго и третьего порядка. Реакции более высокого порядка не встречаются, [c.191]

    Наше понимание возможных реакций ряда различных первичных продуктов очень неполно. В частности, даже в лучших случаях, мало что известно относительно реакций электронно-возбужденных молекул с ароматическими углеводородами. Поэтому в настоящее время из самих отдельных радиационно-химических систем должны быть получены сведения о реакциях, имеющих второй порядок относительно возбужденных молекул. [c.73]

    Для электрохимии органических соединений особый интерес представляют электродные процессы с быстрым переносом электронов и следующей за ним химической реакцией димеризации. Второй порядок химической реакции обусловливает характерные особенности таких процессов [153]. Так, если последующая димеризация электродных продуктов протекает в объеме раствора вблизи поверхности электрода, то для процессов на ртутном капельном электроде форма поляризационной кривой описывается уравнением [153] [c.54]

    Второй порядок ПО стиролу означает, что стадия роста цепи является бимолекулярной. Это видно из приведенной выше химической реакции. 06- [c.239]

    Каждому типу реакции отвечает свое кинетическое уравнение, выражающее зависимость скорости химической реакции от концентрации реагирующих веществ. В соответствии с этим реакции разделяются на реакции первого, второго и третьего порядков. Лишь в наиболее простых случаях порядок реакции совпадает с молекулярностью. Чаше такого совпадения не бывает. Реакция может быть бимолекулярной, но протекать по кинетическому уравнению реакции первого порядка. Это указывает [c.216]


    Во втором уравнении предполагается, что реакция имеет первый порядок, причем скорость реакции считается пропорциональной концентрации с реагирующего газа на поверхности раздела фаз. Первое выражение является достаточно известным в химической технологии оно применимо к диффузии через пограничный слой толщиной X из ядра потока газа, в котором концентрация реагента с предполагается постоянной. [c.37]

    Как будет показано в следующей главе, степенная зависимость от концентрации реагирующих веществ практически всегда выполняется для скорости отдельных стадий химического процесса. При этом как порядок по отдельному веществу, так и суммарный порядок реакции всегда являются целыми положительными числами. Если речь идет об отдельной стадии процесса, то порядок ее никогда не превышает трех. Поэтому особо важное значение имеют в химической кинетике реакции первого, второго и третьего порядка, [c.47]

    Степенная зависимость от концентрации реагирующих веществ практически всегда выполняется для скорости отдельных стадий химического процесса (кроме мономолекулярных реакций в газовой фазе). При этом порядок по отдельному компоненту и суммарный порядок реакции всегда являются целыми положительными числами. Для отдельной стадии процесса порядок обычно не превышает трех. В соответствии с этим особо важное значение в химической кинетике имеют реакции первого, второго и третьего порядков. [c.216]

    Влияние температуры. При повышении температуры элиминирование преобладает над замещением независимо от того, имеет ли реакция первый или второй порядок [116]. Это связано с тем, что энергия активации реакций элиминирования выше, чем реакций замещения (поскольку при элиминировании больше изменений в химических связях), поэтому степень элиминирования возрастает с повышением температуры. [c.36]

    Пусть теперь обе указанные системы рассматриваются только как проточные аппараты (химическая реакция не происходит, применяемые, например, для снижения колебаний температуры и концентрации в установившемся потоке жидкости тогда их эффект будет совершенно одинаковым. Иначе обстоит дело, когда смешение элементов жидкости происходит одновременно с химической реакцией. Хотя общая степень смешения в обеих рассматриваемых системах одинакова, смешение по второй схеме происходит на ранней стадии химической реакции, тогда как по первой схеме оно происходит на более поздней стадии. Это, естественно, приведет к разным выходам продукта из записываемых систем. Если реакция изотермическая и порядок ее больше единицы, более высокая конверсия достигается по первой схеме расположения аппарата. Согласно предыдущему, в реакторе Ъ достигается более высокая степень разделения, чем в реакторе т (/ > J. [c.315]

    Показатели степени тип называют порядком реакции соответственно по веществам А и В, а сумму (от+я) — порядком реакции. Порядок реакции может быть как целым, так и дробным числом. Реакции, состоящие из повторяющихся одинаковых элементарных химических актов, имеют, как правило, второй порядок реакции, реже — первый, еще реже — третий. Сложность кинетического уравнения (дробный или переменный порядок реакции) указывает на сложность реального механизма реакции, протекающего в действительности по нескольким (или многим) элементарным стадиям. [c.86]

    Следует подчеркнуть, что степенная зависимость от концентраций реагирующих веществ практически всегда выполняется для скоростей отдельных стадий химического процесса. При этом как порядок по отдельному веществу, так и суммарный порядок реакции всегда являются целыми положительными числами. Если речь идет об отдельной стадии процесса, то порядок ее никогда не превышает трех. Поэтому особо важное значение имеют в химической кинетике реакции первого, второго и третьего порядка [13]. В общем случае суммарный порядок многостадийной реакции может быть нулевым, дробным либо целым числом он определяется экспериментально. [c.64]

    В окислительной зоне скорость химического взаимодействия углерода с кислородом очень велика, поскольку можно предполагать, что вблизи углеродной поверхности концентрация кислорода мала и реакция догорания СО преимущественно имеет второй порядок. [c.111]

    Теоретическая интерпретация скоростей и механизмов химических реакций (и вообще изменений) исходит из модели столкновений реагирующих частиц и обмена массы и энергии между частицами. Так как бимолекулярные столкновения вероятнее, че.м столкновения более высокого порядка, большинство теорий принимает во внимание только бимолекулярные столкновения. Все теории используют представление об активированном комплексе как о состоянии, промежуточном между реагентами и продуктами. В теории Линдемана принимают, что наблюдаемый второй порядок реакции (например, при предельно низких давлениях в газофазных реакциях) имеет место, если активированный ко.мплекс реагирует в прямом направлении быстрее, чем в обратном. Наоборот, если обратная реакция быстрее прямой, наблюдают первый порядок реакции (например, при предельно высоких давлениях). [c.259]


    Кинетика гомогенной химической реакции электрохимически генерированного катион-радикала ДФА с пиридином в ацетонитриле исследована с помощью метода ВДЭ [74]. Реакция имеет первый порядок как по катион-радикалу, так и по пиридину, что исключает возможность диспропорционирования. Константа скорости второго порядка реакции (3-39) равна 4,5( 0,9) 10 л-моль" -с .  [c.113]

    Для определенной стадии процесса порядок реакции обычно не превышает 3. В соответствии с этим особо важное значение в химической кинетике имеют реакции первого, второго и третьего порядков. Кроме того, известны реакции нулевого порядка. Скорость реакций нулевого порядка не зависит от концентрации и сохраняется постоянной во времени. Например, если взять в избытке малорастворимый в юде эфир и омылять его водой в разбавленном водном растворе, то расход эфира в ходе реакции будет постоянно восполняться из эфирного слоя, а концентрация его в водном слое будет оставаться постоянной. Следовательно, постоянна и скорость процесса омыления. Известны также некоторые реакции, порядок которых выражается дробным числом. [c.102]

    Кинетика химических реакций в большей мере зависит от количества одновременно участвующих в них молекул. В соответствии с этим различают moho-, би- и, редко, тримолекулярные реакции (рис. 64), большего количества молекул, взаимодействующих в процессе реакции, практически не наблюдается. Многие химические процессы, описываемые различными громоздкими стехиометрическими уравнениями, обычно представляют собой совокупность нескольких последовательных, а иногда и параллельных элементарных реакций, каждая из которых принадлежит к одной из упомянутых кинетических групп. Вследствие такой миогостадийности макроскопически наблюдаемых процессов вводится понятие о порядке реакции. Он определяется суммой показателей степеней, в которых концентрации исходных веществ входят в кинетическое уравнение. В простейших случаях порядок реакции определяется наиболее медленной стадией сложного химического процесса. Порядок реакции может быть уменьшен, если одно или два вещества, участвующих в реакции, взяты с большим избытком и концентрация их практически не изменяется. Скорость необратимых реакций первого и второго порядков (dxldt) и соответствующие им константы [c.153]

    Прямая реакция имеет второй порядок, т. е. ее скорость пропорциональна произведению концентраций СО2 и МЭА. Константа ее скорости равна 10 200 л/ мольХ Хсек), а стехиометрический коэффициент 2=2. При расчете используют следующие значения физических и химических параметров константа равновесия при 20 °С [c.196]

    Оба бензольных кольца лежат приблизительно в параллельных плоскостях. Возможно расщепление некоторых структур на отдельные фрагменты, удерживаемые электростатической связью. Ионная связь переходит з ковалентную. Реакция имеет второй порядок, а в избытке кислоты—псевдопервый. При изучении механизма реакции необходимо проводить исследования при высоких концентрациях азобензола (когда влияние адсорбции уменьшается), а также при умеренной кислотности раствора (когда последующей химической реакцией можно пренебречь). [c.104]

    Интенсификация процессов первой группы достигается уве личеиием скорости химической реакции, являющейся функцией произведения концентрации реагентов и температур.ы. Практи чески все разобранные нами реакции имеют второй порядок. Давление в большинстве процессов служит функцией температуры и только при восстановленШ 1 нитросоединения водоро-до.м мoяier оказывать самостоятельное влияние на скорость ре акции. [c.302]

    Реакционная способность фталевого ангидрида и, особенно, дифеновой кислоты значительно ниже, чем янтарной и фумаровой кислот и малеинового ангидрида последние три соединения сравнительно близки по своей активности в реакциях с диэтиленгликолем Тетрахлорфталевый и хлорэндиковый ангидриды реагируют с этиленгликолем с большей скоростью, чем фталевый ангидрид. N-би -(Р-оксиэтил)-анилин активно взаимодействует с малеиновым и фталевым ангидридами Из полиэфиров на основе N-би -(p-oк иэтил)-aни-лина синтезированы водостойкие сополимеры со стиролом Дихлоргидрин пентаэритрита по реакционной способности приближается к диэтиленгликолю, по уступает этиленгликолю. Найдено, что энергия активации образования многих однородных и смешанных ненасыщенных полиэфиров находится в пределах 16—20 ккал моль, реакция имеет второй порядок. Смолы на основе дихлоргидрипа пентаэритрита имеют повышенную огнестойкость и химическую стойкость [c.78]

    Взаимодействие индивидуальных сераорганических соединений с водородом протекает ио первому порядку. Однако для процесса гидроочистки нефтяных фракций лучшее приближение к экспериментальным данным дает кажущийся второй порядок. Изменение порядка реакции, ио-видимому, объясняется постоянным снижением константы скорости реакции пс> мере гидрирования наиболее реакциоииоспособных соединений. При высокой температуре, когда скорость химической реакции резко возрастает, скорость суммарного превращения определяется диффузией сырья в поры катализатора. При этом порядок реакции падает, приближаясь к первому. Для уменьшения внутр адиффузионного торможения реакции ири очистке тяжелых видов сырья рекомендуется использовать катализаторы с размером нор более 10 нм. [c.302]

    I. Высокие давления. В этом случае может оказаться, что К- А К2. Если пренебречь в знаменателе формулы (XIII. 56) вторым слагаемым, то /Сэф = /с< = к Кч/к- здесь Као — KOH TaHTa скорости реакции при высоких давлениях. В этом случае дезактивизирующие столкновения происходят чаще химических превращений. В результате поддерживается статистически равновесная концентрация активных молекул А. Поэтому при высоких давлениях мономолекулярные реакции имеют первый порядок. [c.747]

    Процессы испускания света и внутримолекулярные безызлучательные процессы являются процессами первого порядка с константами скорости, обратными времени жизни. Значения времени жизни нижнего возбужденного синглетного состояния и нижнего триплетного состояния достаточно велики, чтобы при встрече с другими молекулами произошла химическая реакция или дезактивация (тушение люминесценции). Эти процессы имеют второй порядок, однако поскольку концентрация тушащего вещества во много раз выше концентрации возбужденных молекул, их характеризуют константой скорости первого порядка [Р], где й, — бимолекулярная константа скорости, а [Р]—концентрация тушащих молекул. С внутренней конверсией из верхних состояний конкурируют лишь очень быстрые химические преврапрения этих состояний. [c.140]

    Хлорирование и бромирование имеют черты сходства с нитрованием. В определенных условиях, например в уксусной кислоте, хлорирование и бромирование осуществляются через позднее нереходное состояние, близкое к ст-комплексу (см. табл. 13.2), однако, нзменгш условия, можно нарушить соотношение между внутри- и межмолекулярной селективностью. Так, реакция бромирования бромом в нитрометане в присутствии катализатора РеВгз при 25 ""С, подобно некоторым реакциям нитрования, контролируется уже не скоростью химической реакции, а скоростью контактирования реагентов. Тем не менее до сих нор остаются сомнения что же является действующей электрофильной частицей в реакциях галогенирования Активные субстраты хлорируются хлором в уксусной кислоте, где электрофнлом является просто элементарный хлор. Реакция имеет второй кинетический порядок (скорость = Лг[АгН][С12]). На ее скорость не влияют добавки сильных кислот, оснований. Нри добавлении ионов СГ (общий ион) и СНзСОО" в обоих случаях проявляется лишь нормальный солевой эффект. На основании этого можно сделать [c.1089]

    Теперь скорость реакции зависит от концентрации в первой степени, т е реакция имеет порядок равный единице Суммар ную реакцию лимитирует вторая мономолекулярная стадия Затрудненность этой стадии объясняется тем что активные молек>лы часто теряют свою активность при столкновениях и не успевают образовать продукты реакции Естественно что при средних концентрациях мономолекулярные реакции могут иметь дробный порядок лежащии в пределах между 1 и 2 Схема Линдемана упрощена При более точном рассмотрении необходимо учитывать что приобретение молекулой энергии Е еще не обеспечивает ее активности, если эта энергия не сосре доточена на подвергающихся разрушению химических связях [c.285]

    Сагден рассмотрел кинетическую схему реакций, которая приводит к определяюшему влиянию одного из процессов [22]. Он показал, что, вероятно, каждая из реакций в пределах достигаемого временного разрешения обеспечивает равновесие между металлом и гидроксилом наблюдаемая величина ф не отстает от локальной концентрации радикала. При низкой энергии диссоциации связи М—ОН это равновесие достигается в первой реакции, в противном случае — во второй. Если константы скоростей обеих реакций имеют нормальные значения, то следует ожидать, что первая обладает небольшой или нулевой энергией активации, но, являясь тримолекулярным процессом, должна иметь эффективность порядка 10 ". Поскольку эта величина содержит число столкновений с второстепенным компонентом ОН, ее нужно уменьшить на порядок [3]. Таким образом, за 10 столкновений атома металла будет происходить один элементарный химический акт. Эффективность второй реакции равна единице, но она происходит с участием основного компонента, концентрация которого обычно около Ю атм. Энергия активации такой реакции по крайней мере не меньше теплоты реакции, поэтому вторая реакция будет медленней первой, если больцмановский множитель не больше 10" . При температуре 1800 К этой величине соответствует энергия активации 210 кДж/моль. Теплота реакции представляет собой разность энергий связей М—ОН и Н—ОН. Принимая последнюю равной 515 кДж/моль при 1800 К, можно увидеть, что тримолекулярные процессы будут быстрее, если только энергия связи М—ОН не больше 300 кДж/моль. [c.218]

    Система ЗОг—НгО—НгЗО отличается большой сложностью, что затрудняет количественную интерпретацию наблюдаемых кинетических параметров. В работах [181, 182] было высказано предположение, что окисление диоксида серы на графите происходит по химическому механизму при взаимодействии с оН-ра-дикалами, образовавшимися при разряде воды. Однако, как следует из данных, представленных в I части монографии, вода в рассматриваемой области потенциалов на углеродных материалах не разряжается. Значение величин стационарного потенциала, устанавливающегося на углеродных материалах в раство-)ах, содержащих ЗОз, указывает, по мнению авторов работы 183], на большую вероятность протекания реакций, приводящих к образованию дитионовой кислоты. В этом случае можно ожидать, что реакция будет иметь второй порядок по ЗОг. Однако ни на пирографите, ни на активированном угле величина дlg ] /д ц Раоц не превышала 1. Это дает основание считать, что на углеродных материалах электровосстановление ЗОа протекает до серной кислоты без промежуточного образования дитионовой кислоты по механизму, включающему стадию прямого отрыва электронов от окисляемой частицы. [c.152]

    За исключением поглощения света, все рассмотренные выше процессы являются реакциями первого порядка с константами скорости, обратными приведенным на рис. 23 временам жизни. Времена жизни нижнего возбужденного синглета и пижнего триплета достаточно велики для того, чтобы при встрече с другими молекулами произошла химическая реакция или дезактивация (тушение люминесценции). Эти процессы, естественно, будут иметь второй порядок, одпако, поскольку концентрация тушащего вещества часто гораздо выше концентрации возбужденных молекул, их можно характеризовать константами скорости первого порядка кд 0 или где кд и кц — бимолекулярные константы скорости, а [Р] и [( ] — концентрации тушащих молекул. С внутренней конверсией из верхних состояний могут конкурировать лишь очень быстрые химические превращения этих [c.73]

    Важным понятием в химической кинетике является порядок реакций. Он характеризуется суммой показателей степеней концентраций отдельных реагентов в выражении закона действия масс. Различают реакции первого, второго, третьего порядка. Порядок реакции не всегда совпадает с ее молекуляриостью. Большинство химических реакций протекает в несколько стадий я скорость реакции характеризуется скоростью наиболее медленно протекающей стадии. Порядок реакции будет выражаться молекуляриостью этой стадии и, как правило, отличаться от суммы коэффициентов реакции в целом. Так, в реакциях гидролиза солей в разбавленных водных растворах концентрация воды изменяется так незначительно, что в уравнение скорости реакции она не входит, и кинетика таких реакций будет описываться уравнениями кинетики реакций первого порядка. Реакции разложения молекул, внутримолекулярных группировок (например, диссоциация молекулы хлора на атомы) являются одномолекулярными и относятся к реакциям первого порядка. Скорость одномолекулярной реакции выражается уравнением [c.28]

    Как отмечалось выше, циклическая вольтамперометрия позволяет определить некоторые кинетические параметры промежуточных продуктов. Так, порядок химической реакции, в которую вступает интермедиат, находят по графикам зависимости токовой функции iplA v i (здесь А — площадь электрода) от Ig v (или у /") для ступеней интермедиата или конечного продукта. В этом случае определяют эквивалент полупериода жизни интермедиата, т. е. значение й/,, при котором его токовая функция достигает половины своей максимальной конечной величины (или то значение fi/2, при котором токовая функпия для пика промежуточного продукта уменьшается до половины своей начальной величины). Найденное значение Vi/, далее рассматривают как функцию концентрации деполяризатора. Д.ля реакции первого порядка Va, не зависит от концентрации с, для реакции интермедиата второго порядка fi/,с = onst. На примере упомянутой реакции окисления гидрохинона установлено, что дезактивация променхуточ-ной частицы является реакцией второго порядка [65]. [c.32]


Смотреть страницы где упоминается термин Реакции химические второго порядка: [c.240]    [c.19]    [c.58]    [c.58]    [c.352]    [c.352]    [c.139]   
Учебник физической химии (1952) -- [ c.317 , c.320 ]

Учебник физической химии (0) -- [ c.352 , c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Порядок второй

Порядок реакции

Реакции второго порядка

Реакции второй

Реакции порядок Порядок реакции

Химическая порядок

Химические реакции порядок



© 2025 chem21.info Реклама на сайте