Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность процессов в различных реакторах

    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]


    Следует отметить, что селективность процесса значительно зависит от температуры, причем оптимальная температура реакции различна для различных типов реакторов. Например, для трех последовательно-параллельных реакций  [c.36]

    Реакторы с различным режимом движения потока при протекании сложных реакций сравнивают не только по интенсивности, но и по селективности процессов, протекающих в них. Селективность процесса 5 есть интегральная величина, полученная из значений дифференциальной селективности S. Последняя зависит от концентрации реагентов (см. разд. 4.4.2 и рис. 4.13). Как уже не раз говорилось, в режиме ИС весь процесс протекает при конечном значении концентрации исходного компонента С , а в режиме ИВ концентрация меняется от начальной Сд до конечной С . [c.179]

    Оптимальный означает наилучший . И когда говорят оптимальный режим , оптимальный реактор , - следует пояснять в каком смысле наилучший, какой показатель имеет наилучшее значение. Поскольку такие показатели могут быть различны объем реактора, степень преврашения, выход продукта, селективность процесса и т.д., то и задач определения оптимального режима также может быть несколько в зависимости от того, какой показатель оптимизируют Задача оптимизации возникает почти на каждом этапе разработки процесса и реактора. Например, при разработке или выборе катализатора определяют такую оптимальную пористую структуру, которая могла бы обеспечить максимальную скорость преврашения на зерне катализатора при выборе реактора подбирают оптимальные конструктивные размеры, обеспечивающие минимизацию общих затрат на него, а затем определяют оптимальные концентрации и температуру, обеспечивающие максимальное превращение или выход продукта и т.д. Оптимизация химических процессов и реакторов - многовариантная задача. [c.203]

    При использовании разных каталитических систем, изменяя параметры технологического режима, можно изменять селективность процессов в сторону образования более легких либо более тяжелых углеводородов. Испытаны десятки тысяч различных ка талитических систем, причем поиск ведется не только самих ката лизаторов, но и технологии их использования, режимов работы конструкций реакторов, от которых зависит стабильность, долго вечность и другие важные технологические показатели. [c.32]


    Реакторы с различным режимом движения потока при протекании сложных реакций сравнивают не только по интенсивности, но и по селективности процессов в них. Селективность процесса 5 есть интегральная величина из значений дифференциальной селективности 5. Последняя зависит от концентраций реагентов. В режиме ИС весь процесс протекает при конечном значении концентрации исходного компонента Ск, а в режиме ИВ концентрация меняется от начальной Со до конечной. На рис. 2.48,а приведена зависимость 5 от концентрации для параллельной схемы превращения. Поскольку процесс в режиме И С протекает при конечной концентрации Ск, то и селективность процесса будет равна дифференциальной при этой же концентрации - " (Ск). В режиме ИВ селективность процесса будет равна среднеинтегральной величине между (Со ) и. У(Ск). Из рис. 2.48,а можно получить [c.127]

    С целью увеличения селективности процесса концентрацию БД снижали за счет ввода его в нескольких точках по длине реактора. Число вводов БД изменялось от 1 до 3 при различном соотношении потоков. [c.124]

    Большое влияние тип реактора оказывает на селективность процесса и, следовательно, на качество получаемого продукта. Это обусловлено прежде всего разным характером распределения концентраций реагентов и продуктов в реакционном объеме аппарата. Этот факт особенно важно учитывать при проведении последовательных и параллельных реакций различного порядка. [c.132]

    Согласно технологической схеме, сырье и продукты гидродеалкилирования поступают в колонну для разделения на нафталиновую и бензиновую фракции, сырье гидродеалкилирования и остаток. Сырье гидродеалкилирования смешивается с циркулирующим водородом и водой, нагревается в печи и поступает в реактор. Вода способствует повышению селективности процесса и резко снижает коксообразование. Катализатор работает до одного года без регенерации. Продукты реакции после охлаждения поступают в сепаратор высокого давления. Сверху сепаратора выходит циркулирующий водород, который затем очищают от примесей в абсорбере. Жидкая фаза входит в сепаратор низкого давления, затем смешивается с сырьем и поступает в колонну для дальнейшего разделения. В процессе гидродеалкилирования фракции 200—270 °С различного происхождения на алюмокобальтмолибденовом катализаторе при температуре 530 °С, давлении 60 ат, объемной скорости подачи сырья [c.200]

    Большое влияние выбор типа реактора оказывает на селективность процесса, качество получаемого продукта, что объясняется прежде всего разным характером распределения концентраций реагентов и продуктов в реакционном объеме аппарата. Это особенно важно учитывать при проведении последовательных и параллельных реакций разного порядка. Например, при реакции полимеризации от типа реактора может в большой степени зависеть распределение молекулярных масс образующихся полимеров. Объясняется это тем, что реакция имеет вероятностный многостадийный характер (активация, образование цепи, ее рост, обрыв) и, следовательно, на качество продукта (распределение по молекулярным массам) основное влияние оказывают время пребывания и изменение концентрации в реакционном объеме. Эти факторы изменяются по-разному в реакторах различного типа. Например, в реакторе вытеснения трудно обеспечить высокое качество продукта, так как большой диапазон изменения времени пребывания по сечению аппарата при наличии высокой вязкости среды создает резкую разницу в степени полимеризации у стенки аппарата и по его оси. Поэтому наиболее распространенным типом реактора для таких процессов является аппарат смешения или каскад из таких аппаратов. [c.497]

    При осуществлении реакций различных типов в К-РИС необходимо учитывать, что, меняя число реакторов в каскаде, можно изменять как степень превращения Ха, так и селективность процесса и выход целевого продукта (для сложной реакции). При этом необходимо учитывать, что при увеличении числа реакторов в каскаде характер зависимости между степенью превращения, селективностью и выходом целевого продукта в К-РИС будет приближаться к зависимости, существующей для РИВ. [c.133]

    Многообразие химических и физических явлений, лежащих в основе разнохарактерных технологических процессов, выдвигает самые различные требования к химическим реакторам. Однако все без исключения реакторы должны удовлетворять следующим основным требованиям 1) обеспечивать большую производительность 2) давать возможно более высокую степень превращения при максимальной селективности процесса 3) иметь малые энергетические затраты на транспортировку и перемешивание реагентов 4) быть достаточно простыми в устройстве и дешевыми, для чего при изготовлении реакторов необходимо использовать черные металлы, недорогие изделия силикатной промышленности, недефицитные пластмассы и т. п.  [c.74]


    Секционирование реактора выгодно, когда на последовательных этапах превращения нужно поддерживать различные концентрации реагентов (например, учитывая селективный ход процесса). Кроме [c.426]

    Скорость реакции А + В и изменение этой скорости по мере образования нелетучего продукта АВ будут совершенно различными при подаче в реактор исходной смеси состава 2, 3 или 4. Если же подавать в реактор исходную смесь с составом 5, то жидкой фазы в реакторе вообще ие будет и суммарная скорость реакции может оказаться ничтожной, а селективность низкой. Таким образом, изучение кинетики процесса при отсутствии данных о фазовом равновесии в системе связано с большими трудностями и очень часто приводит к неверным результатам. [c.80]

    Химическая кинетика, как и термодинамика, является теоретической базой химической технологии. Поэтому состояние и достижения науки в области кинетики и катализа в значительной степени определяют технический уровень производства в химической промышленности. Для разработки высокоэффективных реакторов и процессов необходимо прежде всего найти кинетические уравнения, описывающие процесс, константы скоростей реакций и зависимость их от различных факторов. Нужны высокоэффективные селективные катализаторы. Решение этих задач осуществляется на базе законов химической кинетики. На современном этапе развития теории химической кинетики центральной является проблема зависимости реакционных свойств химической системы от строения атомов и молекул [c.521]

    Современный период характеризуется внедрением в нефтеперерабатывающую и нефтехимическую промышленность разнообразных каталитических и термических процессов. Экономичность таких процессов зависит прежде всего от успешной работы химических реакторов [1]. Разным типам и конструкциям промышленных реакторных устройств присущи различные гидродинамические режимы, интенсивности подвода и отвода тепла, реагентов и продуктов превращения, эффективности контактирования гетерогенных фаз, способы поддержания активности и селективности катализатора, методы работы во времени, системы автоматизации и др. [c.136]

    В 60 -70-е гг. в результате непрерывного совершенствования технологии и катализаторов (переход к хлорированным алюмоплатиновым, разработка биметаллических платино-рениевых, затем полиметаллических высокоактивных, селективных и стабильных катализаторов), оптимизации параметров и ужесточения режима (понижение рабочих давлений и повышения температуры в реакторах) появились и внедрялись высокопроизводительные и более эффективные процессы платформинга различных поколений со стационарным слоем катализатора. [c.546]

    Различные сочетания реакторов по их числу и режиму работы позволяют повысить производительность аппаратов и селективность химического процесса. [c.42]

    В ходе химико-технологического процесса химическому превращению подвергаются разнообразные вещества, обладающие различными физико-химическими свойствами. Разнообразна и сама природа химического взаимодействия. Естественно, что этому многообразию соответствует многообразие химических реакторов. Хотя конструкция аппарата и влияет на степень конверсии (превращения) и селективность (избирательность) процесса, сущность этого влияния определяется не собственно конструкцией, а определенной взаимосвязью физических и химических факторов, необходимой для успешного протекания химических реакций. Конструкция же аппарата является только средством воздействия на эту взаимосвязь путем изменения скорости отдельных физических и химических стадий процесса. Таким образом, реактор, являющийся обычно [c.57]

    Общими для всех установок риформинга являются большой эндотермический тепловой эффект, который вынуждает вести процесс в трех-четырех реакторах с двумя-тремя промежуточными трубчатйми подогревателями, и разные скорости реакций ароматизации, селективности превращения различных групповых компонентов сырья. [c.156]

    Неоднородности второго тина имеют масштаб порядка десятка и более размеров зерна катализатора, но существенно меньше характерных размеров слоя. Эти неоднородности в случае экзотермического процесса приводят к появлению горячих и холодных пятен, которые регистрируются на выходе из слоя [81. Причина их возникновения, как нам представляется, однозначно связана со способом формирования слоя. Неупорядоченная, неодинаковая загрузка различных участков слоя приводит к неоднородному распределению порозности в слое. Горячие пятна были обнаружены как в опытной установке диаметром 0,6 м, так и в промышленном круинотоннаяшом реакторе диаметром 3,0 м [9]. Появление неоднородностей этого тина в реакторе снин ает селективность процесса, может вызывать спекание катализатора и создавать в реакторе аварийную ситуацию, являясь запалом для реакционной смеси. [c.5]

    Химическая технология имеет дело с крайне широким разнообразием аппаратов. Среди них, разумеется, реакторы, в которых происходят химические превращения и получаются целевые продукты. Однако перечень химико-технологической аппаратуры далеко не исчерпывается химическими реакторами по ряду причин. Во-первых, реагенты надо подготовить к проведению процесса в реакторе подать их туда при определенных давлении и температуре, в определенном (часто — отличающемся от исходного) афегатном состоянии, с заданным соотнощением компонентов и т.д. Во-вторых, в ходе химической реакции из-за нестрогой селективности (наряду с основными протекают и побочные реакции) и неполноты превращения почти всегда получаются смеси различных продуктов реакции и исходных реагентов, так что целевые продукты надо отделить от побочных (с целью их особого использования) и непрореагировавших компонентов (чтобы вернуть их в реактор). В-третьих, химическая технология использует ряд операций, вообще не включающих собственно химические превращения. Наконец, в-четвертых, самим химическим превращениям сопутствуют физические (физико-химические) явления, прямо не относящиеся к химической реакции, но оказывающие существенное (иногда — определяющее) влияние на результат химико-технологического процесса. [c.38]

    Условия процесса и параметры модели нередко представлены в различной форме. Среди данных для реактора чаще фигурируют такие, как производительность, нагрузка, выход продукта, объем, геометрические размеры и др. В уравнениях математической модели, по которой рассчитывают процесс в реакторе, обычно используют степени превращения, условное время реакции и параметры, являющиеся комбинациями физических величин -адиабатический разогрев ДГад, параметр теплоотвода В, коэффициент изменения объема смеси и др. Требуется переход между ними. Например, заданы производительность реактора П и состав сырья (содержание основного реагента Со). Необходимо определить объем реактора Ур при заданной степени превращения X (или выходе продукта ). Расчет реактора производится по его модели, в которую входят условное время реакции т, а также Со и другие параметры в соответствующих размерностях. Производительность П связана с нагрузкой на реактор Уо, начальной концентрацией Со, степенью превращения х и стехиометрическими коэффициентами уд и соотношением П= оСо X уа/уц (если задана еще и селективность 5, то П = = ( Сох5уд/ук), откуда можно определить нагрузку на реактор Уа=Т[/УоСо / . Конечно, при расчете Уо надо соблюдать размерности и вводить необходимые коэффициенты пересчета, как было сказано выше. Зная Со и х, рассчитывают условное время [c.147]

Рис. 27. Зависимость селективности процесса гпдратацпп окпсп этплена от концентрацпп воды в походной смесп (а) п от степени ее конверсии (б) в реакторах различного типа Рис. 27. <a href="/info/40431">Зависимость селективности</a> процесса гпдратацпп окпсп <a href="/info/259552">этплена</a> от концентрацпп воды в походной смесп (а) п от степени ее конверсии (б) в <a href="/info/25613">реакторах различного</a> типа
    В основе млогих технических применений макроЦиклов лежит главное и уникальное свойство - способность избирательно захватывать строго определенные ионы в соответствии с размером полости краун-кольЦа. На основе этого свойства краун-соединений уже сейчас созданы и продолжают создаваться принципиально новые методы анализа, селективной экстракции различных веществ. Разработаны процессы извлечения из сточных вод промышленных предприятий ценных цветных и редких металлов. Большая перспектива в использовании краун-соединений открылась в области разделения изотопов. С их помощью можно отделить, например, кальДий-40 от кальция-44, разделить натрий-23 и натрий-24, литий-6 и литий-7, а также изотопы радиоактивных элементов, что имеет огромное значение в создании будущих реакторов термоядерного синтеза. [c.6]

    Проточные реакторы со стационарным слоем катализатора используют для гидрирования суспензий угля. Получены противоречивые результаты [34—36]. В настоящее время ряд групп исследователей для изучения процессов переработки угля разрабатывает реакторы полного перемешивания, используя реактор Карберри как прототип [37—39]. На таком реакторе могут быть получены более обширные данные, чем на реакторе периодического действия. Так, реактор может быть предварительно разогрет с катализатором, растворителем и газообразным реагирующим веществом. Затем возможно ввести твердое реагирующее вещество в виде суспензии и на свежем катализаторе определить начальную скорость реакции. После проведения реакции непосредственно собирают данные по дезактивации катализатора. При высоких скоростях перемешивания можно измерить селективность при различных степенях превращения. [c.107]

    Надо отметить, что протекание реакции в хроматографическом режиме привлекло за последнее время внимание ряда исследователей. Некоторые из них использовали статистическую трактовку, основанную на вероятностном поведении отдельных молекул. В других решались дифференциальные уравнения материального баланса и уравнения кинетики реакции [81, 82]. В случае обратимой реакции типа А 2 В первоначально введенные вещества А и В образуют два локальных пика, которые постепенно исчезают, образуя один общий пик, расположенный между ними и содержащий оба вещества при равновесных концентрациях. В недавно появившейся работе Хатари и Мураками [83] авторы, используя вычислительную машину, провели сравнение степени превращения исходных веществ и выходов продуктов для ряда типичных модельных реакций (необратимые, обратимые, последовательные), проводимых как в импульсном хроматографическом, так и в динамическом реакторах. Некоторые из полученных при этом результатов мы считаем необходимым привести. На рис. 10 показана зависимость степени превращения от относительного расстояния от входа в реактор при импульсах различной длительности для реакции А 2К. Видно, что в случае импульсной методики степень превращения значительно выше степени превращения ад, получаемой в проточном динамическом реакторе. Высоким выходам соответствуют импульсы малой длительности. Показано также, что форма импульса мало влияет на степень превращения, в особенности при малых Тд. Аналогичный результат был получен для реакций типа А К +3. В этом случае степень превращения в импульсных условиях еще больше превосходит степень превращения в проточном реакторе. Рассчитаны были также последовательные реакции типа А + В К К + В - 5 А 2К 5. Интересной особенностью таких реакций является значительное повышение выхода промежуточного продукта К при проведении реакции в хроматографических условиях, хотя степень превращения увеличивается незначительно по сравнению с проточным реактором (нижняя пунктирная кривая на рис. И). Таким образом, хроматографический режим может совершенно изменить селективность процесса — вместо одного конечного продукта получится другой. [c.49]

    Значительную часть материала пятой главы занимает разбор случаев, когда следует учитывать эффекты разделения в импульсном реакторе протекание реакций в условиях непрерывного хроматографического разделения названо нами хроматографическим режимом проведения реакций. Хроматографический режим, основные закономерности протекания которого установлены в Советском Союзе, открывает новые возможности проведения реакции и управления химическим процессом. Конкретные особенности этого явления определяются агрегатным состоянием подвижной и неподвижной фаз, фазовой локализацией и типом химических реакций, а также способом осуществления разделительйрго процесса. Проведение реакций в хроматографическом режиме позволяет иногда не только обходить термодинамические затруднения, но и, в определенных случаях, существенно влиять на селективность процесса. Можро ожидать, что различные варианты проведения хроматографического режима, предложенные в последнее время у нас и заграницей, получат в недалеком будущем и практическое применение. [c.6]

    Температурные осцилляции, характерные для холоднопламенных явлений, наблюдались в процессе окислении метана в струевом реакторе при 25-35 атм и концентрациях кислорода не ниже 5% [42]. При концентрациях кислорода 8% и выше и температурах около 410°С колебания носили стационарный характер. Повышение температуры до 450°С вызывало уменьшение амплитуды осцилляций и увеличение их частоты. При 475°С осцилляции исчезали. Амплитуда и частоты осцилляций в различных точках вдоль оси реактора сильно отличались. Максимальная селективность образования метанола достигалась при наиболее низких температурах, соответствующих прекращению осцилляций, однако она оставалась меньше той, которая наблюдалась при оптимальных концентрациях кислорода ( 3%). Было высказано предположение, что в условиях существования таких осцилляций можно управлять процессами в реакторе с целью достижения максимальной селективности. [c.148]

    Перейдем к рассмотрению изменения профилей различных параметров вдоль реактора в системе с рециркуляционной петлей. Необходимое превращение на выходе из реактора может быть получено различными изменениями вдоль реактора параметров системы — температуры, давления, концентрации. Оно связано с количеством рециркулируемых в начало реактора компонентов. Естественно, что для каждой конкретной реакции роль указанных факторов проявляется по-разному. Несомненно, что широкое использование результатов одновременного поиска изменения профилей различных параметров может привести к весьма интересным результатам. Однако для решения этой задачи желательно дальнейшее совершенствование математических методов оптимизации и более детальное изучение химических аспектов процесса. Рассмотрение реакции дегидрирования этана показало, что существует определенный профиль температуры, который отвечает максимальной нроизвоцительности реактора по целевому продукту. При этом расход исходного сырья не является максимальным и соответствует строго определенной селективности и глубине превращения на выходе из реактора. Следовательно оптимальные профили изменения параметров режима эксплуатации действующих реакторов должны определяться одновременным изменением производительности аппарата. В частности, исследования по определению оптимального температурного профиля для консекутивной реакции показали, что в этом случае необ ходимо реакцию начать с самой высокой температуры оптимального профиля. Затем углубление процесса следует проводить по мере снижения температуры также в соответствии с оптимальным профилем, найденным, подчеркиваю, для рециркуляционной системы. Кстати, в этом плане применение увеличенной рециркуляции непрореагпровавшего сырья в адиабатических реакторах (таких, как реактор для каталитического дегидрирования этилбензола в стирол) люжет значительно повысить их мощность по свежему сырью. Прп такой постановке вопроса реакторы должны конструироваться таким образом, чтобы они удовлетворяли требованиям теории. Это противоречит существующему укоренившемуся положению, когда реакция осуществляется в готовой конструкции реактора в зависимости от его возможностей, [c.15]

    Из большого числа ранних работ по термоконтактному пиролизу в СССР (ИНХС АН СССР, ИНХП АзССР, ВНИИ НП, ВНИИОС, ВНИИнефтехим, ГрозНИИ), находившихся на различных стадиях отработки, наибольший интерес представляет процесс пиролиза мазута и нефти ВНИИ НП. Процесс ведется в псевдоожиженном слое порошкообразного кокса и может осуществляться в двух вариантах в общем слое или с предварительным разделением сырья на легкую и тяжелую фракции. В последнем случае пиролиз дистиллятной фракции ведется в прямоточном реакторе при повышенной температуре (750— 800 °С) и времени контакта 0,4—1,0 с, а остатка — при более низкой температуре (650—750°С) и времени контакта 10 с (селективный пиролиз). Выход продуктов (на сырье) селективного пиролиза мазута составляет 21—22% этилена, 12— 13% пропилена, 1,9—2,2% бутадиена-1,3. Процесс прошел длительную отработку на опытно-промышленной установке [439]. [c.203]

    После этого цикл работы установки повторяется. Перед подготовкой к пуску, как правило, проводят различные ремонтно-профилактические мероприятия ревизию трубопроводов, аппаратов, проверку их на прочность и герметичность, продувку аппаратов инертным газом и зачистку их от воды, проверку готовности КИП к работе, обеспечение установки паром, воздухом, электроэнергией, водой и т.д. Проводят сушку катализатора и его прокалку в реакторах при повышении температуры до 500°С. Подъем температур производят строго но инструкции. Катализаторы гидрокрекинга выпускаются в оксидной форме, поэтому для перевода их в более активную, обеспечивающую необходимую селективность реакций, требуется проведение сульфидиро-вания катализаторов, что может осуществляться двумя путями первый путь — сульфидирование сернистым сырьем в процессе пуска установки при пониженных температурах до 300°С и на облегченном сырье. Эта операция может проводиться в течение нескольких часов (до 24 ч), цока катализатор не достигнет соответствующей сульфидной формы. После этого можно поднимать температуры до проектных и нагружать установку сырьем. При пуске установки на неосерненном катализаторе он теряет свою активность в связи с быстрым подавлением металлических активных центров отложениями кокса, что может привести к несвоевременной остановке установки из-за неэффективной конверсии сырья. [c.143]

    Процесс окислительного аммонолиза пропилена проводят в реакторах со взвешенным слоем катализатора (на основе вис-мутфосформолибденового катализатора с добавками различных оксидов Со, Ni, N, As, Те и др.) при температуре 370-500 °С и давлении 0,2-1,4 МПа. Селективность по акрилонитрилу составляет 80-85 %. Побочными продуктами являются синильная кислота и ацетонитрил, которые получают как товарные продукты. [c.849]

    Установлены состав и закономерности окисления коксовых отложений железоокисного катализатора процесса ТКП различных видов ВМНС - в реакторе процесса ТКП происходит селективное окисление водорода и углерода, приводящее к увеличению отношения S/ в коксовых отложениях, характер выгорания основных элементов коксовых отложений связан с образованием новых фаз железоокисного катализатора с различной каталитической активностью. [c.22]


Смотреть страницы где упоминается термин Селективность процессов в различных реакторах: [c.84]    [c.141]    [c.142]    [c.33]    [c.134]    [c.31]    [c.106]    [c.213]    [c.10]    [c.232]    [c.67]    [c.38]   
Общая химическая технология (1977) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс реакторов

Процесс селективности



© 2024 chem21.info Реклама на сайте