Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность мембран и мембранных процессо

    При опреснении воды методом обратного осмоса пресную воду отделяют от растворенных в ней солей при помощи мембраны, проницаемой для воды, но непроницаемой для солей. Как было изложено в разд. 12.6, ч. 1, для этого необходимо наличие селективной мембраны, пропускающей только воду, но задерживающей растворенные в ней вещества. Если поместить такую мембрану между рассолом и пресной водой, тенденция к выравниванию концентраций по обе стороны мембраны заставит воду проникать через мембрану в рассол. Этому процессу можно воспрепятствовать, при- [c.154]


    Основные достоинства плазменного способа синтеза мембран заключаются в следующем образование сухих мембран (таким образом, хранение и транспортирование их не требуют специальных предосторожностей), возможность регулирования толщины полимеризационного (т. е. активного) слоя мембраны, высокая адгезия полимерной пленки к подложке, высокая селективность при очень тонком полимеризаци-онном слое (от 1 мкм и менее), низкое давление осаждения полимера из плазмы, возможность осаждения на различных по форме и материалу подложках, минимальное сжатие мембраны в процессе работы (так как плотность осажденной на подложке пленки велика), сравнительно малое время образования мембраны (от 10 до 15 мин), возможность получения мембран на основе широкого ряда полимеров. [c.81]

    Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]

    Как показано в гл. 3, проницаемость и селективность мембраны в общем случае зависят от типа мембран, температуры, давления и состава смеси в напорном и дренажном каналах. Движущая сила процесса меняется вдоль поверхности мембран и зависит от схемы организации и структуры потоков в напорном и дренажном каналах. Таким образом, для разделительного модуля площадь поверхности мембраны будет определяться [c.158]

    Для промышленной реализации мембранных процессов разделения смесей необходимы полупроницаемые мембраны, характеризующиеся высокой разделительной способностью (селективностью), высокой удельной производительностью (проницае- [c.430]

    Мембранная дистилляция протекает при наличии разности температур по разные стороны от микропористой мембраны. Жидкости не должны смачивать мембрану, а разность давлений по разные стороны от мембраны должна быть меньше капиллярного давления. В этом случае жидкость не заполняет поры мембраны, а через мембрану проходит только пар. Жидкость испаряется с той стороны мембраны, где температура более высокая, и пар конденсируется со стороны жидкости с более низкой температурой. Мембрана в процессе разделения непосредственно не участвует. Она играет роль барьера, разделяющего две жидкости. Селективность процесса определяется условиями равновесия в системе жидкость — пар. Процесс мембранной дистилляции применяется в основном к водным растворам, содержащим растворенные неорганические вещества. Однако данный метод может применяться и к водным растворам с низкими концентрациями летучих компонентов, например для разделения смеси вода— этиловый спирт. [c.33]


    Анализ энергетического совершенства основной стадии мембранного процесса — селективного проницания — выполнен в разд. 7.2.2, где исследовано влияние свойств мембраны и параметров газовой смеси на локальные характеристики процесса. [c.262]

    Для ультрафильтрации скорость процесса также вначале увеличивается с повышением рабочего давления, однако вскоре становится постоянной (рис. 1У-9 кривые 3 и 4 и У1-4). При достаточно высокой скорости перемешивания концентрация раствора в объеме неизменная. При этом толщина пограничного слоя и профиль концентраций в нем становятся практически постоянными. Если проницаемость за счет рабочего давления увеличивается до такого состояния, что на поверхности мембраны образуется гель, то концентрация растворенного вещества у мембранной поверхности становится постоянной и не зависит от рабочего давления. При этом скорость процесса и селективность мембраны также постоянны. Расчет основных характеристик процесса ультрафильтрации для этого случая рассмотрен ниже (см. гл. V). / [c.183]

    Для полученных мембран были исследованы проницаемость и селективность по водным растворам хлоридов натрия и кальция. Проведенные исследования позволили установить, что УФ- керамические мембраны с размерами пор 10-15 нм проявляют свойства нанофильтрационных мембран - селективности таких мембран по растворам солей имеют достаточно значимые величины причем селективность увеличивается с ростом движущей силы процесса - перепада давлений на мембране. [c.143]

    В последние годы получены мембраны, которые пригодны для работы при значительно больших температурах (см. стр. 48). Для выбора оптимальных условий их эксплуатации становится необходимым учет влияния температуры на характеристики разделения. Анализ данных по влиянию температуры на проницаемость и селективность ацетатцеллюлозных мембран (рис. 1У-10) показывает, что вначале с повышением температуры проницаемость увеличивается обратно пропорционально вязкости жидкости. Затем кривая G=f t) начинает отклоняться от этой закономерности, проницаемость уменьшается и при 85 С падает до нуля. Этот эффект мои<но объяснить только усадкой и полным стягиванием пор мембраны в процессе структурирования полимера, который заканчивается при указанной температуре, что подтверждается, в частности, необратимым изменением свойств этих мембран после работы при температуре выше 50 °С. Селективность ацетатцеллюлозных мембран при повышении температуры сначала возрастает, затем остается примерно постоянной. [c.183]

    Следует отметить, что уравнение (У.43) может использоваться не только для нахождения состава фильтрата, полученного на мембране с известной селективностью, но также и для решения обратной задачи определения необходимой селективности мембраны для проведения процесса концентрирования раствора в заданном диапазоне концентраций при фиксированном составе фильтрата. [c.234]

    При очень малом диаметре пор (порядка единиц нм) ацетилцеллюлозной мембраны селективность может быть высокой ( 99%), но велико гидродинамическое сопротивление. С увеличением диаметра пор падает селективность, но растет проницаемость по воде. При малом диаметре пор ответственными за селективность могут быть многие различные процессы, вследствие чего количественная теория селективности ацетатцеллюлозных мембран отсутствует. [c.348]

    При расположении мембраны снаружи трубки можно получить трубчатые мембранные элементы малых диаметров, что позволяет значительно увеличить удельную поверхность мембран в аппарате. Кроме того, не требуется высокой точности обработки дренажного каркаса аппарата и возможен контроль процесса формования мембраны. Однако эти аппараты по сравнению с аппаратами, в которых мембрану располагают внутри трубки, отличаются большой материалоемкостью (необходим корпус, выдерживающий рабочее давление), плохими гидродинамическими условиями их сложнее очищать от осадка, а при замене трубчатых мембранных элементов легко повредить селективный слой мембран. [c.350]

    Мембраны, свободно проницаемые только для одного компонента, принято называть полупроницаемыми, а остальные — селективно-проницаемыми, или просто проницаемыми. При разделении газовых смесей обычно имеют дело с селективно-проницаемыми мембранами, поэтому из напорного канала через стенки разделительного элемента проникают все компоненты смеси, но с различной скоростью. Поскольку движущая сила переноса компонента определяется разностью химических потенциалов в напорном и дренажном каналах, скорость проницания каждого компонента меняется по длине мембранного элемента и зависит (как показано ниже) от термодинамических и гидродинамических параметров процесса. Скорость проницания компонентов через мембрану традиционно определяют, используя понятия и феноменологические соотношения фильтрационного процесса. Плотность потока -го компонента через мембра-ну принимают линейно зависящей от перепада давлений над и под мембраной  [c.12]


    Процессы разделения жидких и газовых смесей с помощью селективно проницаемых мембран характеризуются наличием трех потоков (рис. 1.1) потока, подходящего к мембране /о, потока, проходящего через мембрану /ь и потока, отходящего от мембраны /. Отношение величины потока Л к величине потока /о называют конверсией процесса и обычно выражают в процентах. Разделяющую способность мембран принято характеризовать значением селективности Я  [c.10]

    В каждом из мембранных процессов используют мембраны, обладающие специальными свойствами. Наиболее важным свойством мембран является селективность. [c.374]

    Следует подчеркнуть, что увеличение селективности мембраны неизбежно приводит к снижению ее проницаемости (табл. 5.1), поэтому на практике приходится создавать марки мембран с высокой селективностью и малой проницаемостью и наоборот для различных условий проведения процесса обратного осмоса. [c.103]

    Как и в других мембранных процессах, проницаемость изменяется обратно пропорционально толщине мембраны, а селективность не зависит от толщины мембраны. Однако последнее справедливо только для мембран с ненарушенной структурой. По мере того как толщина мембраны уменьшается, становится трудно достичь структурной целостности и поддерживать ее. [c.38]

    Однако тонкое измельчение и тщательное перемещивание компонентов, прессование под давлением не обеспечивают однородности структуры гетерогенных мембран. На стыке гранул имеются поры, иногда пронизывающие мембраны насквозь. Это облегчает перенос воды вследствие электроосмоса, под действием гидростатического давления, а также диффузию электролита из более концентрированного раствора в менее концентрированный. Подобные процессы сильно снижают селективность ионообменных мембран. [c.55]

    Разработка молекулярных сепараторов способствовала значительному усовершенствованию ХМС с насадочными колонками. Процессы обогащения и типы сепараторов можно разделить на три категории а) фракционирование газов в расширяющемся струйном потоке (струйный) б) селективная эффузия через тонкие поры или щель (пористый) в) преимущественная диффузия газа-носителя или образца через полупроницаемые мембраны (мембранный). [c.115]

    Что такое явление концентрационная поляризация и каково его влияние на селективность, проницаемость мембраны и скорость мембранного процесса  [c.243]

    Снизу, как это показано на рисунке, подается соленая вода, а из верхней части отводится опресненная. Процесс может быть непрерывным чем медленнее скорость протока, тем меньше солей остается в опресненной воде. Полнота опреснения зависит и от материала мембраны. Если перегородкой служит пористая диафрагма, неизбежно неприятное явление обратная диффузия щелочи, скапливающейся около катода, и кислоты, накапливаемой в среднем пространстве электролизера ближе к аноду. Значительно больший эффект опреснения может быть достигнут при использовании селективных ионитовых мембран. [c.94]

    Обессоливание воды электродиализом и обратным осмосом не требует применения хим. реагентов и характеризуется существенно меньшими энергетич. затратами по сравнению с дистилляцией. При электродиализе используют селективные мембраны ионообменные, прн обратном осмосе-полупроницаемые мембраны, пропускающие молекулы воды, но задерживающие растворенные минер, и орг. в-ва. Расход электроэнергии иа 1 м воды, обессоленной электродиализом, составляет 6-30 кВт-ч/м , обратным осмосом-1,5-15 кВт-ч/м . Электродиализом воду можно обессолить на 90%, обратным осмосом-на 98%. В установках обратного осмоса рабочее давление достигает 5-10 МПа, укладка мембран м. б. по типу фильтропресса, трубчатая, рулонная (спиральная и в виде полого волокна). См. также Мембранные процессы разделения. [c.398]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]

    Расчет процесса разделения смеси в мембранном модуле представляет сопряженную задачу, включающую решение системы уравнений, неразрывности, движения и диффузии (4.1ч-4.4) в напорном и дренажном каналах, которые взаимосвязаны граничными условиями в форме уравнений проницания (4.5- -4.8). Следует учесть, что скорость отсоса (вдува) и селективность мембраны являются функцией термодинамических и гидродинамических параметров газовых потоков, меняющихся вдоль канала и зависящих от выбранной схемы движения в мембранном модуле. Кроме того, в определенных условиях возможно возникновение свободной конвекции вследствие концентрационной неустойчивости диффузионного погранслоя. Численное решение системы дифференциальных уравнений весьма громоздко и в ряде случаев основано на существенных упрощениях реальной физической картины, например, не учитывается продольная диффузия и свободная конвекция. Процедуру вычислений можно упростить, если использовать одномерные уравнения расхода, импульса и диффузии (4.18), (4.21) и (4.29) и обобщенные законы массообмена, изложенные выше. [c.150]

    Сравиеиие затрат энергии на мембранный и криогенный методы разделения показывает, что даже при использовании мембраны Р-П, обладающей относительно невысокой селективностью, но большой производительностью, мембранный процесс получения обогащенного до 30% (об.) кислородом потока более выгоден. С использованием более селективных мембран эффективность мембранной установки увеличивается [91, 95]. [c.312]

    Из формулы (IV. 120) следует, что при 100%-ной селективности мембрана пропускает только растворитель. Как правило, увеличение концентрации фильтруемой системы приводит к снижению проницаемости и селективности мембраны. В то же время С и ср увеличиваются с повыщением давления, конечно же, до определенного предела. Так как через мембрану преимущественно проходит растворитель, то у ее поверхности значительно увеличивается концентрация растворенных или диспергированных веществ. Это явление называется концентрационной поляризацией. Оно может привести к снижению скорости процесса, к осаждению растворенного вещества и коагуляции дисперсной фазы, к порче мембраны. Основной метод борьбы с концентрационной поляризацией — [штенсивиое пере.мепшванпе фильтруемой системы. [c.244]

    Поскольку индивидуальность веществ в наибольшей степени проявляется в химических реакциях, то прежде всего проявление избирательности характерно именно для мембран, проницаемость которых определяется образованием новьгх соединений в фазе мембраны. Само тюнятие селективность в описании мембранных процессов было впервые использовано для характеристики биологических мембран, которых можно рассматривать как важнейшую группу мембран реакционного типа. Принципы фушщио-нирования биологических мембран рассматриваются в ряде монографий [123-125]. Обратим внимание только на аналитический аспект их применения. [c.217]

    Диффузионный мембранный метод в системе жидкость- твердое тело - газ получил название исиарение через мембрану или первапорация. Метод основан на селективной проницаемости некоторых материалов для различных компонентов жидких смесей. Явление селективной проницаемости впервые обнаружено на каучуковых мембранах для смесей углеводород - спирт. От.чичи-тельной особенностью процесса мембранного испарения от других мембранных процессов является переход проникающих через мембрану веществ из жидкого состояния в парообразное, для чего требуется подвод к системе энергии, 1Ю меньшей мере равной теплоте испарения пермеата. Из этого следует, что испарение через мембрану может быть использовано практически лишь тогда, когда селективность переноса гораздо выше, чем при простом испарении, в частности, для разделения азеотропных и близко кипящих смесей. Движущей силой процесса мембранного испарения является разность химических потенциалов по обе стороны мембраны. Длл поддержания химического потенциала на достаточно высоком уровне необходимо предотвратить конденсацию иермеата на поверхности мембраны со стороны пара. Это достигается непрерывным отводом пара, обдувом инертным газом или вакуумированием. [c.217]

    Механизмом переноса веществ через неаористые полимерные мембраны в процессах испарения через мембрану так же, как и в процессах газоразделения, является сорбционно-диффузионный механизм. Перенос через мембрану осуществляется в три стадии растворение проникающих через мембрану веществ со стороны жидкости в полимерном материале диффузия этих веществ через мембрану их испарение с другой стороны мембраны. Селективность процесса определяется селективной сорбцией и (или) селективной диффузией. В отличие от газоразделения сильное сродство компонентов жидкой смеси к полимерному материалу мембраны вызывает повыщенную растворимость жидкости в полимере. В процессе первапорации ироисходит значительное анизотропное набухание материала мембраны. Со стороны паровой фазы мембрана остается практически сухой, а со стороны жидкости устанавливается равновесное состояние и степень набухания велика. Перенос компонентов смеси через неравномерно набухшую мембрану определяется величинами локальных коэффициентов диффузии компонентов, зависящими от их концентраций. В результате профиль концентрации каждого из компонентов в направлении, перпендикулярном к поверхности мембраны, оказывается существенно нелинейным. Тогда и коэффициент проницаемости не будет постоянной величиной, а будет существенно зависеть от состава смеси. Например [4], если для разделения системы этанол—вода в качестве полимера использовать поливиниловый спирт, то при низких концентрациях спирта мембрана сильно набухает и селективность равна нулю. При низких концентрациях воды поливиниловый спирт имеет высокую селективность по отношению к воде и достаточно большую проницаемость. [c.431]

    Процесс обратного осмоса приобрел практическую значимость лишь после того, как были разработаны соответствующие мембраны. Мембрана должна обладать необходимой прочностью для работы при высоких давлениях, химической стойкостью и устойчивостью к микробиологической атаке. Вначале большинство мембран для обратного осмоса изготавливались из ацетилцеллюлозы, причем ацетилцеллюлоза для этих мембран несколько отличается от используемой в микрофильтрационных мембранах она содержит меньше ацетильных групп на остаток глюкозы. Теоретически на один остаток глюкозы могут приходиться три ацетильные группы, но при высокой степени замещения скорость прохождения воды через мембрану оказывается небольшой. С другой стороны, если содержание ацетильных групп низко, скорость прохождения воды велика, однако селективность таких мембран (задержка ими соли) мала. По-видимому, онтимштьная степень замещения должна быть в пределах 2,1-2,5, что обеспечивает задержку соли на 90-95% и расход через единицу поверхности мембраны (100-200) 10 г с [120]. [c.225]

    Обмен веществ, обеспечивающий процессы жизнедеятельности в живой природе, во многом связан с транспортированием различных ингредиентов через селективно проницаемые (полупроницаемые) мембраны. Высокая энергоэкономичность природных мембранных процессов разделения жидких и газовых смесей, а также высокая селективность проницаемости биологических мембран послужили предметом пристального внимания исследователей, побудив их к созданию подобных материалов и процессов разделения. [c.4]

    Испарение через мембрану осуществляется с помощью непористых полимерных мембран. Исходная жидкая смесь, подлежащая разделению, приводится в контакт с одной стороной селективно проницаемой мембраны, проникшие через мембрану вещества в виде пара удаляются с другой стороны мембраны. Низкие значения парциальных давлений проникающих через мембрану компонентов обеспечиваются путем создания вакуума со стороны паровой фазы или с помощью газа-носителя (см. раздел 18). В отличие от большинства других мембранных процессов, для проведения которых не требуется подвода тепла, процесс испарения через мембрану требует испарения части исходной жидкой смеси. Поэтому данный метод разделения целесообразно использовать для выделения из жидких смесей компонентов, содержащихся в небольших количествах. Разделение смеси достигается за счет того, что различные компоненты смеси переносятся через мембрану с различной скоростью. С помощью испарения через мембрану могут эффективно разделяться азеотропные жидкие смеси, проявляющие положительные отклонения от закона Рауля, разделение которых при помощи обычного процесса ректификации невозможно. В настоящее время испарение через мембрану используется главным образом для дегидратации, т. е. удаления воды из органических растворителей или их смсссй. [c.32]

    В книге кратко изложены основные механизмы мембранных процессов, обсуждены варианты их осуществления и связанные с ними перспективы, приведены свойства некоторых селективных мембран. От пичитепьной особенностью книги является большая информационная насыщенность графического материала. Обсуждены наиболее важные инженерные и экономические аспекты мембранных процессов разделения, тогда как описание конкретного устройства мембранных пакетов, механических, гидродинамических, электрических и других критериев конструирования аппаратуры для рассмотренных разделительных процессов носит скорее иллюстративный характер. Подход к учету взаимодействия мембраны и компонентов разделяемой смеси, приводящий в отдельных случаях к замене селективных мембран неселективными, является в некотором смысле диалектическим. [c.7]

    Высокая проницаемость нужна для уменьшения необходимой пло. щади мембраны и, следовательно, для уменьшения размеров разделительной установки и затрат на капитальные вложения. Высокая избирательность требуется для уменьшения числа разделительных ступеней и снижения эксплуатационных расходов. Действительную величину проницаемости и селективности дЛя каждого процесса разделения следует определять иэ экономических соображений. Требования химической инертности и физической стабильности очевидны. Сплошность мембраны необходима для того, чтобы можно было обео-печить максимальную избирательность мембраны. Наличие пор ипи небольших отверстий в мембране может ухудшить селективные ха -рактеристики мембраны по отношению к вьзделяемому компоненту смеси или даже сделать разделение невозможным из-за вязкого течения и других типов газового переноса через такие дефекты. Теория газового проникания при одновременной конвекции и диффузии через мембраны, имеющие поры, предложена в работе /43/. [c.325]

    Современный электродиализный метод обработки воды представляет собой мембранный процесс, основанный на явлении переноса ионов электролита через селективные ионообменные мембраны под действием постоянного электрического тока. Обработка воды проводится в электродиализаторах — аппаратах, представляющих собой систему рабочих ячеек (дилюатных и рассольных камер), каждая из которых содержит мембраны противоположной полярности, разделенные лабиринтно-сетчатыми перегородкдми-прокладками или корпусными рамками с закладной либо ввариваемой сеткой. Прокладки и корпусные рамки с сеткой выполняют двойную функцию направляют течение жидкости между мембранами и создают турбулентность потока, повышающую эффективность процесса. [c.4]

    Наложение электрического поля на баромембранные процессы существенно нлияет на перенос вещества через мембрану и соответственно — на селективные свойства мембран [2]. Наблюдаемые при этом эффекты зависят от типа разделяемой системы, струкгуры мембраны, вида подводимого к мембране электрического поля и других факторов. [c.381]

    Аппараты для проведения баромембранных процессов работают как при. турбулентном, так и при ламинарном режиме движения разделяемого раствора. Следует отметить, что в аппаратах, работающих при ламинарном режиме, расход энергии значительно ниже, чем в аппаратах, работающих в турбулентном режиме кроме того, высота канала в этих аппаратах существенно меньше, что при прочих равных условиях ведет к увеличению поверхности мембран в аппарате и уменьшению перекачиваевлых объемов разделяемого раствора. Вместе с тем в условиях ламинарного движения разделяемого раствора по мере удаления от входа в канал возрастает концентрационная поляризация (вследствие развитая диффузионного пограничного слоя), что приводит, как отмечалось вьпде, к снижению проницаемости и селективности мембраны по длине канала. Этот факт необходимо принимать во внимание при расчете мембранных аппаратов. [c.399]

    Возможность обогащения пермеата легко проникающим компонентом в одноступенчатой установке ираничена селективностью мембраны и отношением давлений в напорном и дренажном каналах. Для более полного разделения газовых смесей приходится исноль-зовать установки с промежуточным компримированием и рециркуляцией части потоков. Эго отрицательно сказывается на технико-экономических показателях процессов мембранного газоразделения. Кроме каскадных установок для обеспечения более полного разделения могуг быть использованы мембранные колонны непрерывного действия. Как отмечается в [1], термин мембранный аппарат колонного типа не следует понимать буквально. Мембранная колонна может включать в себя один или несколько последовательно соединенных мембранных модулей. Мембранная колонна (рис. 15.5.3.8) состоит из укрепляющей и исчерпывающей частей, разделенных между собой точкой подачи питания, и компрессора. При движении газовой смеси сверху вниз в канале высокого давления происходит ее обеднение легко проникающим через мембрану компонентом. В канале низкого давления газ движется противотоком по отношению к разделяемой смеси и обогащается легко проникающим через мембрану компонентом. На выходе из укрепляющей части колонны получается пермеат, представляющий собой практически чистый легкопроникающий компонент. Часть этого потока возвращается в колонну в виде газовой флегмы после сжатия в компрессоре. Оставшаяся часть отводится в качестве конечного продукта разделения. [c.425]

    Установлено, что не только природа исходных мономеров определяет селективность полученных на их основе сорбентов, так как регулируя при синтезе пол-имера степень структурирования, используя мостикообразова-тели, которые способны изменять внутри- и межцепные взаимодействия, модифицируя структуру полимера введением инертного растворителя, можно получать селективные иониты с заданными свойствами. Точно так же, регулируя структуру координационного центра, можно получать металлсодержащие иониты с заданными кислотно-основными, сорбционными, окислительно-восстановительными, каталитическими свойствами. Исследования свойств комплекситов способствуют развитию науки в области изучения каталитических процессов, идущих в живом организме, поскольку селективные и закомплексованные сетчатые полимеры во многих случаях могут служить моделью клетки, а полученные на их основе ионоселективные мембраны позволяют моделировать мембранные процессы в живом организме. [c.8]


Смотреть страницы где упоминается термин Селективность мембран и мембранных процессо: [c.215]    [c.369]    [c.344]    [c.322]    [c.436]    [c.239]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.314 , c.315 , c.326 , c.328 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.314 , c.315 , c.326 , c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Мембраны селективность

Процесс селективности



© 2025 chem21.info Реклама на сайте