Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения углеводородов

    Химические превращения углеводородов крекируемого сырья, протекающие по карбений ионному цепному механизму на поверхности ЦСК, можно представить в целом в следующей последовательности. [c.117]

    В монографии систематизированы литературные и собственные данные авторов о ряде наиболее важных превращений углеводородов в присутствии металлсодержащих катализаторов. Изложены современные представления о стереохимии каталитических превращений циклических углеводородов (гидрирование, конфигурационная изомеризация, гидрогенолиз), рассмотрены чрезвычайно важные в практическом и теоретическом отношении реакции С5- и Сб-дегидроциклизации алифатических и алкилароматических углеводородов, а также механизмы указанных реакций. [c.2]


    При работе с газообразными парафиновыми углеводородами очень важно знать пределы их взрываемости, чтобы проводить окисление в условиях, лежащих вне этих пределов (табл. 115). Для этого необходимо применять большой избыток воздуха или углеводорода. Поскольку концентрации желаемых продуктов окисления в конечном газе будут в первом случае невелики, их выделение потребует больших затрат во втором случае вследствие малых степеней превращения углеводорода за один проход через реактор необходимо осуществлять рециркуляцию газов. Выходы, как правило, невелики, так как образуются значительные количества окиси и двуокиси углерода. [c.433]

    С. Н. Обрядчиков [2] делает попытку по химическому составу нефтей и по константам равновесия отдельных реакций превращения углеводородов определить порядковое значение температур, при которых происходило превращение исходного органического вещества в нефть. [c.163]

    Гидроочистка моторных топлив происходит при температуре 310—400 °С и давлении 2,0—5,0 МПа, катализатор подбирают с учетом высокой избирательности превращения углеводородов. [c.8]

    Изомеризация — превращение углеводородов с линейной цепью в углеводороды с разветвленной цепью (изомеры). [c.219]

    Нафтеновые кислоты могут образовываться при переработке нефти. При разгонке нефти углеводороды подвергаются окислительному воздействию кислорода ири относительно высоких температурах. Одним из продуктов таких окислительных превращений углеводородов являются нафтеновые кислоты. [c.56]

    Катализаторы значительно ускоряют превращение углеводородов и способствуют образованию желательных продуктов крекинга. Одна и та же порция катализатора используется многократно в течение длительного времени для переработки больших количеств сырья. Реакции, протекающие в присутствии катализатора или, как часто говорят, над катализатором, называют каталитическими. [c.15]

    Превращения углеводородов на алюмосиликатных катализато 6х [c.46]

    По мере необходимости в соответствующих разделах даны сведения о конформационной теории, минимально необходимые для понимания ее применения к практическим исследованиям в области каталитических превращений углеводородов. [c.18]

    Па основании проведенных в СССР и за границей исследований, собранных и обобщенных А. В. Агафоновым, можно отметить следующие основные положения по превращению углеводородов разных рядов. [c.46]

    Отличительной особенностью данной системы крекинга является то, что здесь процесс превращения углеводородов осуществляется в слое мелких частиц твердого катализатора, энергично и непрерывно перемешиваемых в реакторе восходящим потоком паров сырья и продуктов реакции. Регенерация катализатора проводится в отдельном аппарате, но также в слое взвешенных в газовом потоке частиц катализатора. [c.122]


    Все основные реакции протекают с отрицательным тепловым эффектом (с поглощением тепла), причем суммарный тепловой эффект процесса определяется глубиной превращения углеводородов. В ходе процесса температура (480—520 °С) снижается, и дальнейшего превращения сырья не происходит. Поэтому для полного превращения сырья необходим промежуточный подогрев смеси непревращенного сырья и продуктов реакции и использование нескольких последовательных реакторов (обычно трех). [c.41]

    Сравнение реакционной способности ступенчатых поверхностей кристалла с реакционной способностью нанесенных Р1-катализаторов показывает, что структура полидисперсных частиц Р1 в катализаторе может быть с успехом воспроизведена ступенчатыми поверхностями. Установлено, что атомарные ступени играют определяющую роль при превращениях углеводородов, а также при диссоциации Н2 и других двухатомных молекул с большой энергией связи [237]. Показано, что реакция дегидрирования циклогексана до циклогексена не зависит от структуры поверхности монокристалла Р1 (структурно-нечувствительная реакция). В то же время реакции дегидрирования циклогексена и гидрогенолиза циклогексана структурно-чувствительны. В свете полученных результатов предложена [238] расширенная классификация реакций, зависящих от структуры поверхности металла. А именно, предложено отнести к особому классу реакции, скорость которых зависит от размера активных частиц катализатора или от плотности атомарных ступенек и выступов на них, и реакции, скорость которых зависит от вторичных изменений структуры поверхности катализатора (например, из-за образования в ходе реакции углеродистых отложений, а также других эффектов самоотравления). На основе проведенного анализа предложена модель каталитически активной поверхности Р1, учитывающая атомную структуру поверх- [c.165]

    ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ НА МЕТАЛЛСОДЕРЖАЩИХ КАТАЛИЗАТОРАХ [c.1]

    Превращения углеводородов на металлсодержащих катализаторах.— М. Химия, 1981.— 264 с., ил. [c.2]

    Бурное развитие нефтехимии, создание и использование в промышленности новых каталитических процессов превращения углеводородов потребовало в последнее десятилетие значительного роста научной и технической информации, посвященной этим превращениям. При этом характерно, что механизмы реакций, открытых и изученных десятки лет назад, стали вновь исследоваться современными методами и пересматриваться, иной раз радикально. Можно сказать, что в эту область пришла новая волна творческой научной мысли. В основе этого лежит ряд причин. [c.5]

    Рассматриваемые реакции каталитических превращений углеводородов различных классов сгруппированы в пять самостоятельных разделов. Реакции связаны между собой общими катализаторами, сходными усло- [c.6]

    К реакциям гидрогенолиза относится большая группа каталитических реакций, протекающих с разрывом каких-либо связей и присоединением атомов водорода по возникшим свободным валентностям. Поскольку настоящая книга посвящена превращениям углеводородов, речь пойдет о разрыве только связи С—С. Установлено, что разрыв казалось бы одинаковых С—С-связей в углеводородах разных классов (алканы, циклоалканы Сз— —С15, алкилбензолы) часто проходит неодинаково, требует разных катализаторов, а механизмы реакции могут, видимо, существенно различаться. [c.87]

    IV.5. Превращения углеводородов со средним размером кольца на Pt/  [c.152]

    Таким образом, можно констатировать, что при каталитических превращениях углеводородов со средним размером кольца происходят две независимые реакции трансаннулярная дегидроциклизация и прямой гидрогенолиз цикла. Направленность первой реакции определяется конформационными особенностями исходного циклоалкана. Образующиеся бициклические углеводороды претерпевают ряд последующих реакций, в том числе дегидрирование, гидрогенолиз, изомеризацию. С увеличе- [c.159]

    В работе >20], посвященной каталитическим превращениям углеводородов в присутствии Р1-черни, авторы также пришли к заключению о двух механизмах изомеризации— циклическом с промежуточным образованием циклопентанов и механизме сдвига связей. Важная роль при активации катализатора в обсуждаемой работе отводится кислороду, который в незначительных количествах присутствует в зоне реакции. В работах [121, 122] исследованы превращения алканов в присутствии напыленных Р1—КЬ- и Р1—8п-пленок, а также на нанесенных и ненанесенных 1г- и 1г—Аи-катализаторах. Пути протекания реакций Сз-дегидроциклизации — скелетной изомеризации обсуждены с позиций циклического механизма и механизма сдвига связей. [c.225]


    В работе [123] обсуждаются условия, в которых проявляется положительное и ингибирующее влияние водорода на реакции дегидроциклизации, гидрогенолиза, скелетной изомеризации и D—Н-обмена в присутствии Pt- и Ni-катализаторов. Показано, что скорость и направление превращений углеводородов, катализируемых металлами, зависят от содержания водорода в системе. Небольшие количества адсорбированного на поверхности катализатора водорода положительно влияют на превращение углеводородов (см. рис. 43). Так, водород, по мнению авторов [123], замедляет процесс диссоциативной хемосорбции углеводородов на поверхности металла  [c.228]

    Вместе с тем водород оказывает и противоположное действие, что обусловлено следующими факторами [123] уменьшением доли свободной поверхности, на которой могут протекать превращения углеводородов, за [c.228]

    Мерзоль 30 получается, когда в мепазин вводится примерно 30% двуокиси серы и хлора от того количества, которое теоретически необходимо для полного превращения углеводородов в моносульфохлориды. Мерзоль Н соответствует 50%. Мерзоль О отвечает тому случаю, когда в мепазин введены все необходимые 100% двуокиси серы и хлора. [c.141]

    Для того что бы по возможности полностью лодавить образование этих побочных продуктов, процесс хлорирования проводят лишь с частичным превращением углеводородов. Непревращенный исходный углеводород после выделения хлорированных производных снова возвращают в процесс. Чем больше избыток углеводорода, тем меньше относительный выход дн-, п полихлорпроизводных. [c.197]

    Полное устранение образования ди- и полисульфохлоридов практически невозможно. Но уменьшить количество этих продуктов можно, если при сульфохлорировании удовлетвориться частичным превращением углеводорода. Эта мера может быть с успехом применена и при хлорировании и при нитровании. Она основана на законе действия масс, предполагая, что вступивший в молекулу заместитель не способствует или мешает вторичному замещению. [c.365]

    Дальнейшая переработка алифатических сульфохлоридов основывается на реакционной способности хлора, связанного с серой. Поскольку можно сейчас судить, наибольшее значение для целей такой переработки имеют моносульфохлориды. Поэтому при промышленном осуществлении процесса сульфохлорирования стремятся, сколько возможно, подавлять образовапие ди- и полисульфохлоридов. Основным средством для этого является частичное неполное превращение углеводорода. Кроме того, снижают скорость сульфохлорирования и избегают высоких температур (свыше 30—40°). Одпако при частичном неполном превращении приходится мириться с выпуском в продажу продуктов с большим содержанием нейтрального масла (по крайней мере 30%). [c.404]

    Сначала отделяют от нейтрального масла сульфохлорид. Это может быть достигнуто с более или менее удовлетворительными результатами при использовании селективных растворителей, например жидкой двуокиси серы по способу Эделеану, или при помощи ацетонитрила или подобных органических растворителей. В этом случае получается чистый сульфохлорид, почти не содержащий непрореагировавшего углеводорода, Однако, несмотря на то, что реакция сульфохлорирования проводится с неполным превращением углеводорода, продукт реакции содержит также большее или меньшее, смотря по величине превращения, количество дисульфохлоридов. При необходимости, сульфохлорид может быть отделен от дисульфохлоридов, если к смеси прибавить примерно пяти-восьмикратное объемное количество бензина или петролейного эфира (пригодны также пентан, изооктан и т, д.) и затем охладить эту смесь до —20° Ч--30°, При этом, как уже было ранее детально показано, ди- и полисульфохлориды осаждаются практически количественно. Ниже вкратце будет еще раз упомянуто об этом методе работы. [c.404]

    Это может быть достигнуто тем, что (как уже упоминалось) удовлетворяются частичным превращением углеводорода или смеси углеводородов. При сульфохлорировании образование ди- и полисульфохлоридов начинается уже сравнительно рано. Но только тогда, когда смесь углеводородов прореагировала больше, чем примерно на 50%, образование ди- и полисульфохлоридов достигает размеров, которые снижают капиллярно-активное действие солей сульфокислот, получающихся в результате омыления. После этого ди- и полисульфохлориды образуются уже в таких количествах, что в продуктах омыления смачивающая, пенообраэующая и моющая способности существенно снижаются. На рис. 74 эта картина представлена данными, относящимися В качестве исходного материала для [c.413]

    Известно, что если довольствуются частичным превращением углеводорода, то образование ди- и полизамещенных продуктов незначительно. Количественно это выражено следующим уравнением [138]  [c.593]

    Химические методы переработки основаны на глубоких структурных превращениях углеводородов, содс[ жа-ии1хся в нефти нлн нефтепродуктах, п(JД влиянием тс.шс-ратуры, давления, катализаторов, химических реагеггоп. К ним относятся различные виды термического и каталитического крекинга нефтепродуктов и др. [c.231]

    В качестве наиболее типичного примера реакций, протекающих по механизму общего кислотного катализа, являютс5с каталитические превращения углеводородов нефти, имеющие место в таких важных в нефтепереработке процессах, как катал1стический крекинг, изомеризация и алкилирование. [c.91]

    В процессах термоадсорбционной деасфальтизации (ТАД) облагораживание ТНО достигается за счет частичных термодеструк — тив1[ых превращений углеводородов и гетеросоединений сырья и последующей адсорбции образовавшихся смол, асфальтенов и кар — боидов, а также металлов, сернистых и азотистых соединений на поверхности дешевых адсорбентов. В отличие от сольвентной деас — фальтизации, в процессах ТАД ТНО не образуется трудноутилизи— руемого продукта, как асфальтит. [c.107]

    Весь этот сложный процесс превращения углеводородов. при температурах от 440 до 540° получил название крекинг-процесс. Само слово крекинг означает расщепление и выбрано потому, что оно подчеркивает главную особенность процесса — расщепленпе углеводородов. Крекинг — это прежде всего процесс массового расщепления молекул, процесс глубокого качественного изменения крекируемой смеси с образованием новых соединений, отличающихся от первоначальных по температурам кипения, удельному весу, и другим показателям. [c.14]

    Успехи органического катализа на современном этапе неотделимы от общего уровня развития органической химии. В частности, конформационные представления с успехом используются при изучении тонких деталей механизма гетерогенно-каталитических реакций, например некоторых стереохимических превращений углеводородов. В связи с этим в книге даются необходимые сведения о конформационной теории, приведен ряд примеров ее использования для трактовки механизма некоторых каталитических реакций углеводородов. В книге рассмотрены и обсуждены наиболее распространенные механизмы гидрирования циклоалкенов и ароматических углеводородов, а также каталитические реакции конфигурационной изомеризации стереоизомерных ди-и полиалкилциклоалканов и гидрогенолиза циклоалка-нов, содержащих от трех до пятнадцати атомов углерода в цикле. [c.7]

    Необходимо отметить также, что в настоящее время для объяснения механизма реакций гидрирования, дей-терообмена и ряда других превращений углеводородов успешно используют концепцию промежуточных адсорбированных соединений л-аллильного типа [16—26]. При этом в качестве промежуточного поверхностного соединения рассматривается я-аллильный комплекс VII, в образовании которого участвуют один атом металла и три атома углерода  [c.30]

    Превращения углеводородов, содержащих 9—18 атомов углерода в цикле, впервые исследовал Прелог с сотр. [196], над Рё Катализатором при 400 °С. Реакционная способность указанных циклоалканов зависела главным образом от размера цикла при этом образовывались различные арены, в том числе полициклические и небензоидные ароматические соединения — инден, азу-лен, нафталин, фенантрен, трифенилен и др. Учитывая число углеродных атомов в исходном цикле и основываясь на характере каталитических превращений последнего, авторы [196] разделили исследованные углеводороды на четыре группы I (С5+47,) — 9H18, 13H26, С17Н34  [c.152]

    Соморджай и соавт. [236—239] для выяснения механизма каталитических превращений углеводородов на ступенчатых поверхностях платины пытались идентифицировать атомные центры монокристаллов Р1, ответственных за разрыв связей С—С, С—Н и Н—Н. Структура и состав поверхности монокристаллов Р1 были исследованы методами Оже-спектроскопии и дифракции медленных электронов. Полученные результаты сопоставлены с каталитическими свойствами Р1 ь реакциях О—Н-обмена, дегидрирования циклогексана в бензол и гидрогенолиза циклогексана с образованием н-гексана. [c.165]

    Кубицка X., Окаль Я., Яблоньска Г.— В кн. Нанесенные металлические катализаторы превращения углеводородов. Труды Всесоюзной конференции, Новосибирск, 1978. Новосибирск, изд. ИК СО АН СССР, 1978. Препринт Л" 78. т. II. [c.186]

    Влияние степени дисперсности Pt в катализаторах на протекание реакций дегидроциклизации и изомеризации исследовалось в ряде работ [70—78]. Обнаружено [75], что при увеличении среднего размера частицы Pt от 1,0 до 45,0 нм увеличивается выход продуктов дегидроциклизации. Однако в работе [70] показано, что количественное распределение продуктов реакции и скоростей дегидроциклизации и изомеризации не зависит от размеров частиц (в интервале 1,5—5,0 нм). Интересные закономерности получены на образцах Pt/AbOa, содержащих 0,2 и 10% Pt [71, 73]. На высокодисперсном катализаторе [(0,2%) Pt)/Al20a] преобладают одиночные, главным образом одноатомные, активные центры и, следовательно, изомеризация и другие превращения углеводородов проходят через промежуточную стадию образования циклического переходного состояния. На катализаторе с большими кристаллитами [(10% Pt)/Al203] ак- [c.200]


Библиография для Превращения углеводородов: [c.204]    [c.184]   
Смотреть страницы где упоминается термин Превращения углеводородов: [c.366]    [c.451]    [c.584]    [c.6]    [c.6]    [c.89]    [c.158]   
Смотреть главы в:

Глубокая переработка нефти -> Превращения углеводородов

Каталитическая ароматизация парафиновых углеводородов -> Превращения углеводородов




ПОИСК







© 2025 chem21.info Реклама на сайте