Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец тантале

    Протактиний может быть экстрагирован в виде купферроната из 3 М азотной кислоты. В этом случае совместно с протактинием в органическую фазу переходят цирконий, гафний, титан и полоний, в то время как свинец, марганец, тантал, торий и элементы первой и второй групп периодической системы полностью остаются в водной фазе. Более избирательна экстракция протактиния р, р -дихлорэтиловым эфиром и амиловым спиртом из [c.507]


    Титан дает окраску, весьма сходную с окраской, образуемой вольфрамом, причем пока не найдено способов избежать этого вредного влияния титана. Трехвалентное (но не двухвалентное) железо препятствует реакции вольфрама. Молибден(У1) может дать красную, коричневую или голубую окраску в зависимости от условий. Вредное влияние молибдена и железа(1П) можно предотвратить восстановлением их хлоридом двухвалентного олова. Согласно Богатскому , для предотвращения восстановления вольфрама можно добавить фосфорную кислоту. Низкие концентрации фосфорной кислоты не оказывают влияния на окраску вольфрама, а высокие — ослабляют ее. Алюминий, марганец, тантал и медь не мешают определению. Ванадий(И1), никель и хром(И1) не дают с реагентом окрашенных соеди- [c.799]

    Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200 С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, катализаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Мо, Nb с металлами Си, Ag, Au. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом. [c.49]

    Добавки металлов к титану по-разному влияют на температуру превращения а->р. К металлам, стабилизирующим а-фазу, относится алюминий. р-Фазу стабилизируют ванадий, ниобий, тантал, молибден. Марганец, железо, никель, медь понижают температуру перехода а-фазы в Р-фазу, но сплавы титана с этими металлами, достигнув определенной, так называемой эвтектоидной температуры, при дальнейшем охлаждении претерпевают превращения, при которых Р-фаза полностью распадается, образуя а-фазу и промежуточную -фазу, обога- [c.86]

    По магнитным свойствам различают диамагнитные металлы (выталкиваемые из магнитного поля) и парамагнитные (втягиваемые магнитным полем). Диамагнитны медь, серебро, золото, цинк, кадмий, ртуть, цирконий. Парамагнитными считают скандий, иттрий, лантан, титан, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, рутений, радий, палладий, осмий, иридий, платину. Железо, кобальт и никель обладают ферромагнетизмом, т. е. особенно высокой магнитной восприимчивостью. [c.257]

    Водород, кислород, сера, хром, селен, молибден, теллур, сурьма, вольфрам, марганец, иод, бор, ванадий, ниобий, тантал [c.131]


    С плавление с едким натром. Способ заключается в переводе соединений ниобия и тантала в не растворимые в воде ниобат натрия и танталат натрия. Одновременно образуются вольфрамат, станнат, силикат и алюминат натрия. Их удаляют водным выщелачиванием.Также образуются Ре (ОН)а и Мп (0Н)2. Вместе с не растворимыми в воде ниобатом, танталатом и титанатом натрия они остаются в остатке от выщелачивания. При обработке остатка соляной кислотой железо и марганец переходят в раствор в нерастворившейся части остаются гидроокиси ниобия, тантала и титана. [c.66]

    Значение электролиза расплавленных сред. Электролизом водных растворов могут быть получены либо электроположительные металлы, либо такие электроотрицательные металлы, на которых перенапряжение для выделения водорода в условиях электролиза очень велико, например цинк и марганец. Такие же электроотрицательные металлы, потенциалы которых значительно отрицательнее потенциала выделения водорода, как щелочные и щелочноземельные, алюминий и магний, не могут быть получены электролизом водных растворов. Их готовят электролизом расплавленных сред, а также этим методом получают, как правило, и тугоплавкие металлы, такие, как бериллий, цирконий, торий, ниобий, тантал, и редкоземельные металлы. Разрабатываются методы электролитического получения титана и других металлов. Этим же способом получают фтор. [c.211]

    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    В чугунах и сталях определяют углерод (графит), марганец, никель, кобальт, медь, хром, алюминий, кремний, фосфор, серу и мышьяк, а также редкие металлы — титан, ванадий, молибден, вольфрам, цирконий, ниобий, тантал и др. [c.129]

    Ванадий, ниобий, танта Хром, молибден, вольф Марганец Технеций Рений Железо [c.1056]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Спектральным методом в принципе не отличающимся от метода, предназначенного для определения примесей в цирконии, описанного на стр. 172, определяют алюминий, хром, гафний, железо, магний, марганец, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Чувствительность при определении многих примесей достаточно высокая, что позволяет расширить область применения метода, если есть возможность приготовить шкалу эталонов. [c.205]

    К элементам, резко понижающим стойкость сплавов против коррозионного растрескивания, относятся алюминий, олово, медь, ванадий, хром, марганец, железо и никель к элементам, слабо влияющим на понижение коррозионной стойкости, — цирконий, тантал и молибден. Сплавы со структурой а-титана более чувствительны к коррозионному растрескиванию, чем сплавы с -титаном. Термическая обработка приводит к некоторому повышению чувствительности а-сплавов к корро- [c.78]


    Окисление органических соединений в газообразном состоянии Ванадий, молибден, тантал, вольфрам, хром, уран, марганец, висмут, железо, кобальт, никель, медь и серебро в виде отдельных окислов или в смесях Цеолиты, двойные алюмосиликаты, природные цеолиты, полевой шпат 363 [c.458]

    Пятиокись ванадия, молибденовый ангидрид, окись хрома, вольфрамовый ангидрид Ванадий, молибден, тантал, вольфрам, хром, уран, марганец, висмут, железо, кобальт, никель, медь, серебро в виде окислов или их смесей Ванадий [c.512]

    Титан, уран, марганец, ванадий, ниобий, тантал [c.32]

    Платина, золото, серебро, медь, железо, никель, кобальт, хром, тантал, ванадий, вольфрам, молибден и марганец и их соответствующие окислы окись меди с вольфрамовым ангидридом на активированном угле [c.116]

    Платина, золото, серебро, медь, железо, никель, кобальт, хром, тантал, ванадий, вольфрам, молибден и марганец или их окислы плюс вольфрамовый ангидрид [c.122]

    Гидрогенизация орехового масла Титан, уран, марганец, ванадий, никель, тантал 2487 [c.302]

    Широкое применение жаропрочных сплавов потребовало получения в чистом виде большого числа как редких (вольфрам, молибден, титан, цирконий, ниобий, тантал, ванадий), так и обычных металлов (никель, кобальт, хром, марганец, медь), причем предел содержания основных вредных примесей— мышьяка, сурьмы, олова, кадмия, висмута, свинца — составлял [c.7]

    Примечания. 1. ТУ-104. ИЛ-18 эксплуатировались на топливе ТС-1 МИГ-21 — ка Т-1 2. Алюминий, никель, хром, марганец, титан, олово, свинец, ванадий содержатся в количествах 0,001 — 0,01% 3. Кобальт, вольфрам, цирконий, гафний, ниобий, тантал, висмут, теллур, таллий, германий, галлий, индий, иттрий, лантан, стронций, литий, фосфор, скандий, бериллий в осадках отсутствуют. [c.189]

    Исследования напыленных металлических пленок [60, 61] показывают, что для некоторых переходных металлов (например, родия, вольфрама, молибдена, кобальта, никеля) быстрая адсорбция кислорода при 77—90 К и давлении около 10 Па ( -lO" мм рт. ст.) ограничена заполнением монослоя с Хт -Достаточно надежно можно считать, что другие благородные металлы VIII группы ведут себя аналогично. Однако поглощение кислорода на железе в этих условиях намного превышает емкость монослоя, так же ведет себя титан. Если кислород адсорбируют при комнатной температуре, в список металлов, адсорбирующих больше монослоя кислорода, кроме железа и титана, входят хром, марганец, тантал, кобальт, никель и ниобий, хотя на благородных металлах быстрое поглощение кислорода все еще ограничено приблизительно монослоем [62]. [c.313]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    С фенилфлуороном реагируют также титан, цирконий, гафний, олово ( V), ниобий, тантал, сурьма (III), теллур, молибден, вольфрам. Окислители ванадий (V),xpoM (VI), марганец (VII) и церий (IV) окисляют реагент. Поны галлия и мышьяка в кислых раствора.ч не реагируют с фенилфлуороном. Не мешают определению фторид (<1 м-г в 10 мл) и железо (III) (100 мкг в 10 мл). [c.381]

    Для кальция и стронция типична гранецентрированная решетка, а для бария — кубическая объемно центрированная. В III группе алюминий кристаллизуется в гранецентрированной кубической решетке, скандий, иттрий и лантан — в плотнейшей гексагональной. У переходных металлов титана, ванадия, хрома, циркония, ниобия, молибдена, гафния, тантала, вольфрама встречаем объем-ноцентрированную кубическую решетку. Марганец железо, технеций, рутений, рений, осмий образуют гексагональные решетки, [c.284]

    Марганец известен с 1774 г. и давно уже применяется в металлургии сталей и чугуна (зеркальный чугун). Рений открыт И. и В. Ноддак (1924) в результате упорных поисков металла, предсказанного еще Д. И. Менделеевым (двимарганец). Рений был получен в свободном виде из отходов после выделения тантала, ниобия и платиновых металлов. В земной коре содержание рения составляет 10 % (мае.). [c.352]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирова1гия стали. Это значит, что и легированной стали ртуть нестрашна. [c.243]

    Катализаторы, кроме кобальта и железа, содержат также металлы от V до VIII группы периодической системы Элементов — ванадий, молибден, вольфрам, ниобий, тантал, хром, марганец или их окиси свинец, олово, цинк, кадмий и твердые окиси неметаллов V группы (фосфор, мышьяк, сурьма) катализаторы обрабатывают водородом при 200°, а также сероводородом, селеноводоролом, сероуглеродом, ио-дистым водородом, например активный уголь пропитывают молибдатом аммония, азотнокислым свинцом и фосфорной кислотой и обрабатывают при 300° сероводородом или уголь пропитывают вольфраматом аммония, нитратом кобальта и пятиокисью сурьмы и обрабатывают сероводородом при 350° наконец, уголь можно пропитывать ванадатом аммония, азотнокислым кобальтом и фосфорной кислотой и нагревать при 350° с водородом и сероуглеродом в катализаторе может также содержаться окись урана [c.359]

    В другом патенте [96] указываются каталитические вещества, включающие окислы или другие соединения соответствующих металлов, содержащих электрон, определяющий валентность, в оболочке, расположенной непосредственно под внешней оболочкой. К этим металлам относятся [97, 98] скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, циик, иттрий, цирконий, ниобий, молибден, мазурий, рутений, родий, палладий, серебро, кадмий, лантан, гафний, тантал, вольфрам, рений, осмий, иридий, платина, золото, ртуть, актиний, торий и уран. За исключением меди, циика, серебра, кадмия, золота и ртути, все эти элементы относятся к амфотерным и характеризуются наличием незанолнепных двух или трех внешних электронных оболочек. Медь, серебро и золото в состоянии высших валентностей также относятся к амфотерным элементам. [c.387]

    Уже давно были исследованы каталитические свойства металлов, которые позволяли проводить реакцию гидрогенолиза сернистых соединений. К таким металлам относятся скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, иттрий, цирконий, молибден, рутений, родий, палладий, серебро, кадмий, лантан, гафний, тантал, вольфрам, рений, осьмий, иридий, платина, золото, ртуть, актиний, торий, уран. Наиболее часто в промышленных процессах гидроочистки щ)имвняются соединения металлов групп У1А и железа, сочетание окислов и сульфидов кобальта и молибдена, сульфидов никеля и вольфрама. [c.2]

    Алюминий.. Берилий. . . Ванадий. Висмут. . . Вольфрам. . Железо Ре +. Золото Аи +. Кадмий. . . Кобальт Со + Магний. . . Марганец Мп + Медь Си + . Молибден Мо + Мышьяк Аз. Никель N 2+. Олово 5п +. Свинец РЬ +. Серебро. . . Тантал. . . Титан Т1 +. Хром Сг +. . Цинк. ... Цирконий. .  [c.368]


Смотреть страницы где упоминается термин Марганец тантале: [c.135]    [c.125]    [c.343]    [c.372]    [c.17]    [c.101]    [c.118]    [c.636]    [c.17]    [c.129]   
Гетероциклические азотосодержащие азосоединения (1982) -- [ c.139 ]

Гетероциклические азотосодержащие азосоединения (1982) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

ГРУППА СУЛЬФИДА АММОНИЯ Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий, алюминий, бериллий, хром, торий, скандий, редкоземельные металлы, цирконий, титан, ниобий и тантал Элементы, образующие при действии (NH4)aS растворимые в кислотах сульфиды Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий Железо

Тантал

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Чистые алкильные и арильные производные и алкилгалогениды титана, ванадия, ниобия, тантала и марганца

Элементы побочных подгрупп групп IV — титан, цирконий, гафний V — ванадий, ниобий, тантал VI — хром, молибден, вольфрам VII — марганец, технеций, рений III — скандий



© 2025 chem21.info Реклама на сайте