Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород электронное облако

Рис. 27 Схема перекрывания атомных электронных облаков в молекуле водорода. Рис. 27 Схема перекрывания атомных <a href="/info/2875">электронных облаков</a> в молекуле водорода.

Рис., 7. Радиальное распределение плотности электронного облака 1 , и З -электронов. (В качестве единицы по оси абсцисс принят радиус первой орбиты атома водорода ао = 0.529 А). Рис., 7. Радиальное <a href="/info/92999">распределение плотности электронного</a> <a href="/info/8864">облака</a> 1 , и З -электронов. (В качестве единицы по оси абсцисс <a href="/info/858188">принят</a> радиус первой орбиты атома водорода ао = 0.529 А).
Рис. 13. Распределение плотности электронного облака в молекуле водорода при антипараллельных спинах электронов (а) и в сближающихся атомах водорода при параллельных спинах электронов (б). Рис. 13. <a href="/info/92999">Распределение плотности электронного</a> <a href="/info/8864">облака</a> в <a href="/info/19564">молекуле водорода</a> при <a href="/info/314514">антипараллельных спинах</a> электронов (а) и в сближающихся атомах <a href="/info/1581">водорода</a> при <a href="/info/314515">параллельных спинах</a> электронов (б).
    J i Элементы малых периодов. Первый период состоит из двух эле-ентов. В атоме водорода электрон должен находиться на первом энергетическом уровне, т. е. электронная формула невозбужденного атома водорода 1 1. Поскольку 5-электронные облака имеют форму шара, модель атома водорода можно представить схемой [c.23]

    Связь между атомами разных элементов всегда более или менее полярна, что обусловлено различием размеров и электроотрица-т(льностей атомов. Например, в молекуле хлорида водорода НС1 стязующее электронное облако смещено в сторону более электро-огрицательного атома хлора. Вследствие этого заряд ядра водорода уже не компенсируется, а на атоме хлора электронная плотность становится избыточной по сравнению с зарядом ядра. Иными словами, атом водорода в НС1 поляризован положительно, а атом хлора отрицательно на атоме водорода возникает положительный заряд, на атоме хлора — отрицательный. Этот заряд б, называемый эффективным, можно установить экспериментально. Согласно имеющимся данным эффективный заряд на атоме водорода молекулы H I составляет бн = +0,18, а на атоме хлора 6 i = —0>18 абсолютного за-р 1да электрона. Можно сказать, что связь в молекуле НС1 имеет на 18% ионный характер, т. е. полярна. Ниже приведены значения эффективных зарядов на атомах кислорода в оксидах элементов 3-го периода  [c.80]


    Молекула воды имеет угловое строение в вершине угла, равного в парах 104"27 (во льду 109°), помещается атом кислорода, на расстоянии 0,096 нм помещаются атомы водорода. Электронные облака водородных и кислородных атомов перекрываются так, что их оси направлены к углам тетраэдра. К двум другим углам тетраэдра направлены оси облаков jo-электронов кислорода, так что в целом электронная структура молекулы воды тетраэдрическая. Пары электронов атома кислорода, не использованных для связи с протонами, создают существенный избыток электронной плотности в одной части молекулы, другая часть (та, где находятся протоны) имеет избыточный положительный заряд это обстоятельство наряду с угловой формой молекулы объясняет наличие у воды момента диполя и, как следствие, сил взаимодействия между молекулами Н—О—И. Между внешними парами электронов кислорода и протонами соседних молекул воды возникают водородные связи, играющие существенную роль в формировании структуры всей массы жидкости. Каждая молекула воды может участвовать в образовании четырех таких связей две из них образуются [c.243]

    Молекулы водородных соединений образуются за счет спаривания 3 неспаренных р-электронов атома неметалла с неспаренными электронами 3 атомов водорода. Электронные облака р-электронов имеют, как вам известно, вытянутую, гантелеобразную форму, и их оси взаимно перпендикулярны. Поэтому три атома водорода присоединяются к атому неметалла так, [c.38]

    При приближении атома брома к молекуле водорода электронное облако атома брома отталкивает электронное облако молекулы водорода и одновременно притягивает ближайший протон. Электронное облако молекулы водорода деформируется, отдаляется от атома брома и тянет за собой удаленный от брома протон, расстояние по связи Н—Н увеличивается, по связи Н—Вг — уменьшается. В переходном состоянии расстояния между всеми атомами соизмеримы. Зная, как сказывается изменение расстояний между атомами на потенциальной энергии частицы, в принципе возможно рассчитать изменение энергии при образовании переходного состояния, т. е. энергию активации. [c.49]

    Два атома водорода, находящиеся на большом расстоянии друг от друга, не оказывают взаимного влияния. Но при сближении они начинают взаимодействовать. Два ядра с одинаковыми положительными зарядами отталкиваются, и два электронных облака также отталкиваются друг от друга. Однако самым важным взаимодействием оказывается притяжение между ядром одного атома и электронным облаком другого атома. При сближении атомов их электронные облака втягиваются в область между ядрами (рис. 12-1, г). Комбинация двух ядер и двух электронов устойчивее (имеет более низкую энергию), чем два изолированных ядра, каждое со своим электроном. Чем больше сближаются ядра, тем больше возрастает в пространстве между ними электронная плотность, тем ниже становится [c.511]

    Характер распределения электронной плотности для исходных атомных и образованных молекулярных орбиталей показан на рис. 24. Следует отметить, что поскольку складываются (вычитаются) орбитали (точнее волновые функции), то электронная плотность (характеризуемая квадратом волновой функции) между ядрами больше суммы плотностей электронных облаков изолированных атомов для тех же расстояний. На рис. 25 показано распределение /ектронной плотности в молекуле водорода На- Электронная плот- [c.48]

    При полярной связи электронное облако связывающей электронной пары не располагается симметрично по отношению к обоим связываемым атомам, как при неполярной и не концентрируется полностью при одном из них, как в случае ионной связи. Связывая оба атома, оно обнаруживает более высокую плотность у одного из них, т. е. смещается в той или другой степени в сторону одного атома. Так, в молекуле НС1 электронная пара в большей степени смещена к атому хлора, поэтому он приобретает некоторый отрицательный заряд, а атом водорода — положительный заряд. Несимметричное распределение электронной пары в молекуле НС1 приводит к большему выделению энергии при образовании молекулы, чем это было бы при симметричном распределении электронной пары или при переходе ее целиком к хлору. Этим и обусловливается образование такой молекулы и большая ее устойчивость. [c.64]

    Все эти элементы зависят от параметра Яав — межъядерного расстояния. Нц = Н22 = а называют кулоновским интегралом потому, что на языке квантовой механики он передает классическое кулоновское взаимодействие частиц. Он включает энергию электрона в атоме водорода в основном состоянии, кулоновское отталкивание ядер и энергию взаимодействия второго протона с электронным облаком, окружающим первый протон  [c.67]

    Каждой комбинации из трех квантовых чисел п, I, т1 отвечает определенная атомная орбита, т. е. определенная волновая функция и определенная конфигурация электронного облака. Например, для атома водорода набору значений квантовых чисел м = 1, 1=0, т, = О отвечает волновая функция [c.9]

    В химических реакциях чаще всего приходится иметь дело с атомными орбитами со значениями азимутального квантового числа I, равными О, 1,2. Отвечающие этим значениям I состояния электрона в атоме называются соответственно з-, р- и -состояния-ми. Перед обозначением, принятым для азимутального квантового числа, обычно ставится номер главного квантового числа, отвечающий данной атомной орбите, например, 1з-, 25-, 2р-орбита и т. д. На рис. 1 приведены конфигурации электронных облаков 15-, 2з- и одной из 2р-орбит атома водорода. [c.9]


    Собственные функции для 5- и р-состояний атома водорода, а также соответствующие электронные облака изображены на рис. 6 и 6а. Для других атомов волновые функции имеют аналогичный характер. [c.49]

    Бинарные соединения углерода с водородом почти инертны по отношению к воде. Это объясняется различием в строении их молекул и молекул гидридов элементов VA, VIA и УПА групп периодической системы. В молекулах насыщенных углеводородов вся поверхность атома углерода тетраэдрически окружена атомами водорода. Электронное облако углерода не так открыто для атаки, как, например, у. атомов азота, кислорода или галогенов, вокруг которых в их гидридах атомы Н занимают только три, две или соответственно одну тетраэдрическую вершину (см. рис. 12.И). У углерода не остается орбиталей, которые могли бы сильно взаимодействовать с дополнительными атомами водорода. В этом случае существенны по крайней мере два эффекта 1) уменьшение вероятности любой возможной реакции вследствие отсутствия открытых электронов, 2) термодинамическая устойчивость молекулы из-за наличия четырех связей, образуемых каждым атомом углерода. Поэтому при обычных температурах насыщенные углеводороды редко вступают в реакции. [c.372]

    Как общие соображения, так и конкретные факты, демонстрирующие существенную зависимость величин от характера замещающих атомов, показывают, что торможение внутреннего вращения определяется взаимодействием несвяааньых друг с другом атомов, принадлежащих различным ротаторам. Так, в случае этана торможение должно быть связано с взаимодействиями атомов водорода (или связей С—Н), принадлен ащих двум метильным группам. В литературе имеются попытки квантовомеханических расчетов обменного взаимодействия несвязанных атомов водорода в этане. Эйринг и Кимболл проведя такого рода вычисления, получили значение Ug 300 кал./моль при устойчивой транс-конфигурации этана. Как мы видели, экспериментальное значение Ug примерно в 10 раз больше. Эйкен и Шефер провели расчет квантовомеханического взаимодействия в этане, считая устойчивой цис-форму. Они исходили из того, что благодаря цис-распо-ложению атомов водорода электронное облако С—С-связи теряет цилиндрическую симметрию — между водородами плотность облака повышена. Расчет привел к согласующемуся с опытом значению i7o = 2800 кал./моль, но, как показали Горин, Уолтер и Эйринг был недостаточно [c.68]

    Для того чтобы заставить объединиться атомы водорода, необходимо преодоле1ь заслон из электронного облака, что требует огромной энергии. Такие реакции происходят в глубинах Солнца [c.178]

    Свойства комплексов с хлористым водородом соответствуют структуре, в которой молекула хлористого водорода связана свободно с электронным облаком я-электронов, без образования определенной связи между электрофильной группой и каким-либо определенным атомом углерода (XXI). Свойства комплексов с системой хлористый водород — хлористый алюминий (или соответствующих бромидов) согласуются со структурой типа карбоний-иона, в которой протон перешел к кольцу и соединен с определенным атомом углерода (XXII). Следует отметить, что могут образоваться изомерные формы, содержащие протон как в орто- так и в значительно меньшем количестве в ж/иа-положении. [c.401]

    Решение. В указанном ряду размеры валентных электронных облаков элеменюв (О, 5, Зе, Те) возрастают, что приводит к умен11и1ению степени их перекрывания с электронным облаком атома водорода и к возрастающему удалению области перекрывания от ядра атома соответствующе] о элемента. Это вызывает ослабление притяжения ядер взаимодействующих атомов к области перекрывания электронных облаков, т. е. ослабление связи. К этому же результату приводит возрастающее экранирование ядер рассматриваемых элементов в ряду О—5—5е—Те вследствие увеличения числа промежуточных электронных слоев. Таким образом, при переходе от кислорода к теллуру прочность связи Н—Э умеиыиается. [c.56]

    При образовании молекулы аммиака атомы водорода занимают только три нершины тетраэдра, а к четвертой вершине направлено электронное облако непо. еленной электронной пары атома азота. Это можно представить следующей схемой  [c.65]

    Электронное облако не имеет резко очерченных в пространстве границ. Поэтому ионятие о его размерах и форме требует уточнения. Рассмотрим ц качестве примера электронное облако ls-элек-трона в атоме водорода (рис. 8). В точке а, находящейся на [c.77]

    Впервые подобный приближенный расчет был произведен в 1927 г. В. Гейтлером и Ф. Лондоном для молекулы водорода. Эти авторы сначала рассмотрели систему из двух атомов водорода, находящихся на большом расстоянии друг от друга. При этом условии можно учитывать только взаимодействие каждого электрона со смоим ядром, а всеми остальными взаимодействиями (взаимное отталкивание ядер, притяжение каждого электрона к чужому ядру, взаимодействием между электронами) можно пренебречь. Тогда оказывается возможным выразить зависимость волновой фуикции рассматриваемой системы от координат и, тем самым, определить плотность обигего электронного облака в любой точке [c.119]

    Образование химической связи между атомами водорода является результатом взаимопроникнопения ( перекрывания ) электронных облаков, происходящего прн сближении взаимодействующих атомов (рис. 27). Вследствие такого взаимопроникновения плотность отрицательного электрического заряда в межьядсрном пространстве возрастает, Положительно заряженные ядра атомов [c.120]

    Так, в молекуле водорода (рис. 27, стр. 120) иерекрываь ие атомных 5-электронных облаков происходит вблизи прямой, соединяющей ядра взаимодействующих атомов (т. е. вблизи оси связи). Образованная подобным образом ковалентная связь называется а-связью (сигма-связь). [c.133]

    Представление о направленности ковалентных связей позволяет объяснить взаимное расположение атомов в многоатомных молекулах. Так, ири образовании молекулы воды электронные облака двух неспаренных 2р-электронов атома кислорода перекрываются с 15-электронными облаками двух атомов водорода схема этого перекрывания изображена на рис, 36. Поскольку р-электронныа [c.134]

    Возникновение водородной связи можно в первом приближении объяснить действием э.".ектростатнческих сил. Так, при образовании полярной ковалентной связи между атомом водорода и атомом фтора, который характеризуется высокой электроотр1щатель-исстью, электронное облако, первоначально принадлежав- /С шее атому водорода, сильно смещается к атому фтора. В результате атом фтора приобретает значительный эффективный отрицательный заряд, а ядро атома водорода (протон) с внешней ио отношению к атому ([)тора стороны почти лишается электронного облака. [c.155]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Из сказанного ясно, что условием образования водородной связи является высокая электроотрицательность атома, непосредственно связанного в молекуле с атомом водорода. Только при этом условии электронное облако атома водорода достаточно сильно смещается в сторону атома-партнера, а последний приобре тает высокий эффективный отрицательный заряд. Именно поэтому водородная связь характерна для соединений самых электроотри нательных элементов сильнее всего она проявляется у соединений фтора и кислорода, слабее — у соединений азота и еще слабее — у соединений хлора и серы. [c.155]

    Каждый ИЗ атомов углерода в кольце бензола находится в состоянии / -гибридизации и затрачивает по три валентных электрона на образование ст-связей с двумя соседними атомами углерода и с одним атомом водорода. При этом все шесть атомон углерода и все о-связи С—С и С—Н лежат н одной плоскости (рис. 131). Облако четвертого валентного электрона каждого из атомов углерода (т. е, облако / -электрона, не участвующего Б гибридизации) имеет форму объемной восьмерки ( гантели ) и ориентировано перпендикулярно плоскости бензольного кольца. Каждое из таких р-электронных облаков перекрывается над и под плоскостью кольца с р-электронными облаками двух соседних атомов углерода. Зто показано на рис. 132, а и, в проекции, на [c.477]

    Степень окисления элемента очень часто не совпадает с его валентностью, которая, как известно, определяется числом электронов, принимающих участие в перекрывании электронных облаков и образовании общего электронного облака связи. Так, в молекулах Н2 и H I каждый из атомов отдает по одному электрону на образование o6niero электронного облака связи. Степени же окислсния их различны. В молекуле Н2 максимальная плотность облака связи сосредоточена на равном расстоянии от ядер обоих атомов, поскольку оба они равноценны. Поэтому атомы сохраняют свой электронейтральный характер и степень окисления их равна нулю. В молекуле же H I максимальная плотьгость электронного облака р есколько смещена к хлору, поэтому степень окисления хлора равна — 1, а водорода + 1. [c.141]

    Расчет Гейтлера и Лондона дал количественное объяснение химической связи иа основе квантовой механики. Он показал, что если электроны атомов водорода обладают противоположно направленными спинами, то при сближении атомов происходит значительное уменьшение энергии системы — возникает химическая связь. Образование химической связи обусловлено тем, что при наличии у электронов антипараллельных спинов стано1зится возможным передвижение электронов около обоих ядер, которое иногда не вполне удачно называют обменом электронов . Движение электронов около обоих ядер приводит к значительному увеличению плотности электронного облака в пространстве между ядрами, которое стягивает положительно заряженные ядра. Притяжение уменьшает потенциальную энергию электронов, а следовательно, и потенциальную энергию системы — возникает химическая связь . Следовательно, образование химической связи объясняется понижением потенциальной энергии электронов, обусловленным увеличением плотности электронного облака в пространстве между ядрами. [c.79]

    Гейтлер и Лондон провели также квантовомеханический расчет энергии взаимодействия молекулы водорода с третьим атомом водорода. Расчет показал, что третий атом ие будет притягиваться, т. е. образова1П1е молекулы Нз невозможно. Так было дано тео()е-тическое обоснование важнейшего свойства ковалентной связи — насыщаемости. Не рассматривая данный расчет, можио пояснить его результат, исходя нз того, что было сказано о молекуле На. Присоединение третьего атома к Нг не происходит, поскольку условием для перекрывания электронных облаков, которое даег имическую связь, является наличие у электронов антипараллель-ных спинов. Спин электрона третьего атома водорода неизбежно будет совпадать по направлению со спином одного из электронов в молекуле. Поэтому между третьим атомом водорода и молекулой водорода будут действовать силы отталкивания, подобные тем, [c.80]

    Может возникнуть вопрос, насколько правомерно составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Такое приближение не является слишком грубым по двум причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах, об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании химической связи. Так, полная энергия электронов для двух свободных атомов водорода равна —2-13,6 =—27,2 эВ, а изменение энергии при образовании молекулы Нг (энергия связи) составляет 4,5 эВ. Подобное соотношение характерно и для других молекул. Оно обусловлено тем, что образование связи сравнительнс мало влияет на движение электронов вблизи ядер атомов, где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при переходе от атомов к молекуле в некоторой мере учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.100]

    Метод валентных связей. Представления об образовании молекулы водорода, развитые Гейтлером и Лондоном, были распространены и на более сложные молекулы. На этой основе возникла теория образования химических связей, которая получила название метода валентных связей. Этот метод основан на представлении о том, что атомы в молекуле удерживаются посредством одной или нескольких электронных пар, причем эти связи тем прочнее, чем в большей степени перекрываются электронные облака взаимодействуюших атомов. Обычно большая степень перекрывания электронных облаков наблюдается на прямой, соединяющей центры атомов. Комбинации двухэлектронных двухцентровых связей, которые отражают электронную структуру молекулы, называют валентными схема.ии. [c.47]

    Молекулы, состоящие из пяти атомов.. Молекулы, в которых один атом одного элемента связан с четырьмя атомами другого элемента, образуются за счет взаимодействия 5- или р-электронов одного атома с 5- илн р-электронами четырех других атомов. В этих случаях молекулы имеют форму тетраэдра. Примерами являются молекулы метана СН4 и тетрафторида углерода F . В н,еитре тетраэдра располагается атом углерода, гибридные электронные облака которого перекрываются с 5-эле.ктрош1ыми облаками атомов водорода или р-электронньгми облаками атомов фтора, располагаюн ихся в вершинах тетраэдра. [c.61]

    Условием для возникновения водородной связи является большая величина электроотрицагельности у атома, непосредственно связаного в молекуле с атомом водорода. Положительно поляризованный атом во.дорода, по существу почти лишенный электронного облака, способен, благодаря своему малому размеру, проникать в электронную оболочку отрицательно поляризованного атома (фтора, кислорода, азота). В результате этого атом водорода одной молекулы связывается неподеленной электронной парой ат(1ма электроотрицательного элемента другой молекулы. Эта связь атома водорода, входящего в одну молекулу, с атомом электроотрицательного элемента, входящего в другую молекулу, и является водородной связью. Ниже схематически показана ас-соцмация двух молекул воды посредством водородной связи  [c.64]

    Антисимметричной волновой функции отвечает уменьшение плотности электронного облака между атомами (рис. 5, II). При этом положительно заряженные атомы отталкиваются и система становится энергетически неустойчивой. Молекулярной орбитали г11анр отвечает энергия Е т, больишя, чем энергия атома водорода Е . Орбиталь 1[)анг, соответствующая повышению энергии, называется разрыхляющей молекулярной орбиталью. [c.26]

    Атом водорода состоит из одного протона (ядро) и одного электрона. Это простейший атом, не имеющий аналогов в периодической системе х1гмических элементов Д. И. Менделеева. Он способен терять алектроы с образованием положительно заряженного катиона и в этом отношении сходен со щелочными металлаг.ш, которые также проявляют степень окисления + 1. Однако катион Н+ представляет собой голый прогон, в то время как ядра катионов щелочных элементов окружены электронными оболочками. Ион водорода имеет очень небольшой радиус — 0,53 10 см, поэтому в ходе химических реакций он легко проникает в электронные облака других атомов, причем связь может быть ковалентной. [c.98]

    Электрону, находящемуся па связываюшей орбитали, соответствует электронное облако с повышенной электронной плотностью в межъ-ядерном пространстве, в результате чего энергия взаимодействия электрона с ядрами оказывается ниже, чем энергия того же электрона на исходной атомной орбитали, где он взаимодействует только с одним ядром. Поэтому нахождение электрона на связывающей молекулярной орбитали приводит к сближению ядер до некоторого расстояния, на котором его связывающее действие уравновешивается возрастающей при сближении ядер силой их электростатического отталкивания. В результате этого между атомами возникает химическая связь. Простейшей частицей с химической связью является молекулярный ион Нг, в котором один электрон на связывающей орбитали взаимодействует с двумя ядрами водорода (протонами). [c.10]

    Например, реакция (П1.36) между молекулой СН4 и атомом С1 является реакцией окисления — восстановления. В молекуле СН,, пара электронов, образующая связь С -Н, в равной мере принадлежит обоим атомам, т. е. на каждый из атомов приходится в среднем по одному электрону, как и в случае свободных атомов Н и С. Поэтому атому водорода в СН4 приписывают степень окисления 0. В образующейся молекуле НС1 связь Н—С1 noJtHpHa, электронное облако о-связи сильно смещено в сторону атома С1 и принято считать, что атом Н частично отдал свой электрон атому С1 и имеет степень окисления 1, а атом С1 восстановлен до степени окисления —1. Таким образом, происходит перенос электрона от атома Н к атому С1. [c.102]


Смотреть страницы где упоминается термин Водород электронное облако: [c.6]    [c.85]    [c.360]    [c.454]    [c.367]    [c.79]    [c.43]    [c.48]   
Курс органической химии (1965) -- [ c.164 ]

Курс органической химии (1967) -- [ c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Облака как

Электронное облако в атоме водорода

Электронные облака

Электроны облака



© 2025 chem21.info Реклама на сайте