Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол кольцо

    Хлорирование бензола в производстве хлорбензолов осуществляют в хлораторах — вертикальных цилиндрических аппаратах, футерованных кислотоупорной плиткой и заполненных железными кольцами в качестве катализатора. Хлорирование бензола в производстве гексахлорана осуществляют фотохимическим методом в аппаратах колонного типа, состоящих из отдельных царг. Реакция инициируется и поддерживается ультрафиолетовым излучением, генерируемым ртутно-кварцевыми лампами типа ДРТ-1000, размещаемыми в аппарате так, чтобы обеспечивалось облучение в объеме реакционной массы. [c.352]


    Но самое важное шестичленное кольцо — это то, которое образует молекулу бензола. Сравните его формулу с формулой циклогексана  [c.56]

    Ароматические соединения тоже могут содержать атомы хлора. Например, в молекуле бензола атомы хлора могут замещать один, два или хоть все шесть атомов водорода. Молекула бензола без одного атома водорода называется фенильной группой, а без двух атомов водорода — фениленовой группой. Если хлор заместил два атома водорода, расположенные на противоположных сторонах бензольного кольца, то получается соединение, называемое парадихлорбензолом . (Корень ди происходит от греческого слова два .) Это инсектицид, или, иными словами, вещество, убивающее [c.73]

    В интересном цикле работ С. Л. Кипермана с сотр. [103—106] проведено комплексное исследование кинетики и механизма гидрирования бензола и его ближайших гомологов с применением кинетических, изотопных, адсорбционных и расчетных методов. Исследование кинетики гидрирования толуола в области обратимости процесса показало, что скорость реакции проходит через температурный максимум и характеризуется температурным коэффициентом, меньшим единицы. При переходе от одного углеводорода к другому скорость гидрирования на М1-катализаторе изменяется в ряду бензол > этилбензол > толуол > л-ксилол л-кси-лол>мезитилен но закономерных изменений скоростей изотопного обмена как в ароматическом кольце, так и в алкильных заместителях не наблюдается. Полученные данные указывают, по мнению авторов [106], на различие механизмов реакций гидрирования и Э—Н-обмена. [c.56]

    Но для бензола можно написать вторую, совершенно равноценную формулу Кекуле, в которой простые и двойные связи поменяются местами по сравнению с первой формулой. Реальная молекула бензола описывается как резонансный гибрид двух структур Кекуле электроны, ответственные за образование двойных связей, делокализованы, размазаны по кольцу, так что все связи между атомами углерода в бензоле равноценны и являются промежуточными между классическими одинарными и двойными связями. Именно в этом состоит причина повышенной стабильности и особенностей химического поведения бензола. [c.162]


    Так, произошла авария в производстве хлорбензола на стадии хлорирования бензола. Причина аварии — коррозия стального хлорного трубопровода. Хлорирование бензола осуществляли в хлораторе (вертикальном цилиндрическом аппарате, футерованном кислотоупорной плиткой), нижняя часть которого была заполнена железными кольцами Рашига. Во время работы хлоратора хлоргаз внезапно стал проходить через коллектор хлора, а затем через коллектор бензола, что привело к воспламенению бензола. Под воздействием пламени расплавился трубопровод около хлоратора и усилилась утечка бензола. Пламя распространилось на [c.116]

    Кольцо с можно рассматривать как о-дизамещенный бензол. Кольцу должна соответствовать полоса поглощения в области 770—735 см- [229]. В спектрах 5,6-бен- [c.92]

    Система четыреххлористый углерод — бензол Кольца мм [c.631]

    Структурная формула бензола (кольцо из шести групп СН, соединенных между собой попеременно одинарной и двойной связями), широко используемая по настоящее время, предложена в 1865 г. немецким химиком А, Кекуле (1829—1891), [c.144]

    Алкилированные ароматические углеводороды. Термическое разложение алкилированных ароматических углеводородов сопровождается значительным числом реакций, на которые оказывают воздействие температура, давление, катализаторы, присутствие водорода или других ароматических углеводородов, действующих как акцепторы водорода, а также олефинов или других продуктов разложения. Так известно, что при пиролизе толуола получаются бензол, дибензил, стильбен, дито-лил, фенилтолил, фенилтолилметан, дитолилметан, дифенил, стирол, нафталин, антрацен и фенантрен. Наличие более длинных боковых цепей или нескольких заместителей увеличивает число возможных реакций однако, несмотря на сложность получаемых продуктов, совершенно ясно обнаруживается одно свойство ароматических кольцевых систем, сохраняющих свою идентичность на протяжении большого количества пиролитических реакций, а, именно, их стабильность тем не менее имеется одна реакция, которая приводит к разрушению ароматических структур — пиролиз в присутствии водорода, особенно в контакте с катализатором, который может служить гидрирующим агентом. В этом случае ароматические кольца сперва гидрируются, а затем расщепляются. Нагревание алкилароматических углеводородов с водородом, особенно в присутствии катализаторов, часто приводит к образованию незамещенных ароматических углеводородов, которые могут подвергаться затем гидрогенолизу. [c.103]

    Суммируя все изложенное выше, можно констатировать, что наиболее правдоподобной является точка зрения, нашедшая отражение в работах 1[20, 21, 77], согласно которой гидрирование аренов и алкенов проходит через ряд общих стадий. Как арены, так и алкены, могут иметь общие адсорбированные на поверхности катализатора частично гидрированные промежуточные образования. При адсорбции на катализаторе ароматического кольца возможны два варианта а) образование шести новых а-связей (XIX) [77], б) образование я-комп-лекса бензола с катализатором (XX) [21]  [c.51]

    Существуют и такие карбоновые кислоты, которые не являются жирными. Их лp им J , —..бензойная кислота, мо-лёТГулы которой состоят из карбоксильной группы, соединенной с бензольным кольцом. Она была впервые выделена еще в 1608 году из бензойной смолы и от нее получила свое название. Корень бёнз входит в состав названий и других родственных соединений, включая и сам бензол. Бензоат натрия, т. е. бензойная кислота, обработанная гидроокисью натрия, в небольших дозах применяется как консервирующая добавка к продуктам питания. [c.161]

    Из рис. 10.3 видно, что кривая со— бензол Б-нафтеновые с пятью дер жания кокса при риформинге пара— атомами углерода в кольце Г- [c.185]

    Первый порядок по мономеру и зависимость от корня квадратного из интенсивности света при фотохимической полимеризации были проверены для большого числа систем и при значительном изменении условий опыта. Из экспериментальных значений скорости полимеризации получена эмпирическая константа скорости = кр (2ф a/A ()V2. В таких опытах можно измерить 1а — удельную скорость поглощения света, но измерения ф довольно сложны. Один из методов состоит в использовании инициаторов, таких, как перекись бензола РЬСО — 00 — СОРЬ образующиеся из нее свободные радикалы фенил Рй или бензоил РЬСОО могут быть определены в полученном полимере. В принципе на одну цепь должно приходиться но одному бензольному кольцу, это позволяет подсчитать значение ф. С другой стороны, можно определить средний молекулярный вес образовавшегося мономера и сделать вывод о числе инициированных цеией. Это также дает возможность подсчитать ф. [c.516]

    Известно также, что бензол окисляется в малеиновый ангидрид при условиях, сходных с условиями, применяемыми при производстве фталевого ангидрида [13]. Таким образом, частичный разрыв кольца почти неизбежен, но, по-видимоыу, после того как уже образовался фталевый ангидрид, кольцо менее чувствительно к атаке, чем ранее. Высказано предположение, что каталитическое окисление толуола происходит при помощи атомарного кислорода, выделяемого катализатором в результате прохождения через ряд стадий гидроксилирования ца поверхности катализатора [9]. В условиях, применяемых для получения фтале- [c.12]


    НОЙ диссоциации бензола. Очевидно, если энергия света способна разорвать бензольное кольцо, то аналогичный эффект должно произвести применение и тепловой энергии. При температуре электрической дуги бензол подобно другим углеводородам дает газовые смеси, содержащие водород, ацетилен, метан, этан и аналогичные продукты. [c.97]

    Давно известно, что бензол обладает полной симметрией [176, 186, которая удовлетворительно выражается простой структурой кольца I. Эта структура объясняет известную изомерию различных производных бензола. Трудность возникает при попытке представить остаточные ва- [c.392]

    Деформационные колебания бензольиого кольца, имеющего четыре атома водорода, ха1ра1ктеризуют ся полосой поглощения 760 ом .  [c.60]

    В молекулах, обладающих комбинациями а- и и-связей, соответствующие пары углеродных атомов находятся во втором валентном состоянии (см. том I, стр. 119), характеризующемся наличием у такой пары атомов углерода пяти а-связей, которые, располагаясь в одной плоскости, образуют при каждом углеродном атоме три угла по 120°. При образовании циклогексатриена и при превращении его за счет сопряжения всех тг-связей в ароматическую систему бензола кольцо из шести углеродных атомов остается плоским. Из этих же представлений вытекает и отличие шестичленного цикла бензола от гипотетического четырехчленного кольца циклобутадиена и от восьмичленного кольца циклооктатетраена. Для этих систем расположение всех л-связей в одной плоскости, что, согласно квантово-механическим представлениям, является обязательным [c.232]

    Решить эту задачу смог опять-таки Кекуле, В один из дней 1865 г. (как он сам рассказывает) Кекуле в полудреме ехал в омнибусе, и ему пригрезилось, что он видит атомы, кружаш,иеся в танце. Вдруг конец одной цепи соединился с ее началом, и образовалось вращающееся кольцо. И Кекуле решил, что именно такой должна быть структурная формула бензола. До тех пор структурные формулы строились только в виде линейных цепей углеродных атомов, но теперь Кекуле ввел понятие кольцо (нли ядро ) атомов углерода и предложил следующую структурную формулу бензола  [c.85]

    В молекуле бензола три тройных связи. Они чередуются с простыми, образуя замкнутую сопряженную систему, йт-за этого активность бензола не особенно высока— ниже, чем, например, у циклогексана. Бензольное кольцо требует для своего образования меньше энергии. Поэтому оно входит в состав огромного числа органических соединений. Их столько, что химики обычно выде- [c.56]

    Однако формула бензола, предложенная Кекуле, не совсем устраивала хнмнков-органиков. Дело в том, что во многих отношениях молекула бензола вела себя так, как будто в ней вовсе и не было двойных связей. (Ведь двойные связи должны были бы сделать бензол более активным, чем циклогексан, а не менее активным.) В конце концов современные теории строения вещества позволили более или менее удовлетворительно решить эту загадку. Они слишком сложны, чтобы здесь в них углубляться, стоит лишь ска-, зать, что речь в них идет о частичных, или дробных связях. Можно считать, что углеродные атомы бензольного кольца связаны шестью одинаковыми полуторными связями, которые менее активны, чем двойные или даже простые. [c.56]

    Деалкилирование ароматического кольца. Процессы деалкилирова-ния ароматических углеводородов представляют особую важность для производства бензола, толуола, нафталина и прочих ценных ароматических углеводородов. Реакции де алкилирования являются реакциями, обратными алкилированию и, так как изменение свободной энергии последних до 540° С остается отрицательным, то для проведения деалкилиро-вания большинства ароматических углеводородов обычно требуются относительно высокие температуры. [c.104]

    В молекулах бензола и алкилароматических углеводородов энергия связи между атомом углерода в кольце и водородом сопос — тавима с прочностью С —Н —связи в метане, а энергия отрыва водорода от углерода, сопряженного с ароматическим кольцом, значительно ниже, чем энергия С —Н —связи в алканах. [c.14]

    Важную роль при каталитическом гидрооблагораживании нефтяных остатков играют реакции гидрирования аренов. О термодинамике гидрирования полициклических аренов и смешанных структур, включающих и насыщенные кольца можно судить только качественно. Это связано с многочисленностью промежуточных продуктов гидрирования этих углеводородов [36]. Скорость гидрирования аренов с различным числом ареновых колец зависит от длины и порядка связей в молекуле. Так, для полициклических аренов характерны укороченные тройные связи,-которые гидрируются легче, чем сопряженные и изолированные двойные связи. В связи с этим конденсированные арены должны гидрироваться быстрее моноциклических аренов, но медленнее алкенов. Подтверждение этому бьшо получено в опытах по гидрированию при высоком давлении водорода (5-30 МПа) и использовании ряда гидрирующих катализаторов. Большую скорость гидрирования полиаренов (например, нафталина и антрацена) по сравнению с бензолом при высоком давлении водорода объясняют тем, что с ростом давления доля поверхности катализатора, занятая водородом, увеличивается, и водород становится доступным для всех укороченных связей [36]. В области низких давлений (0,2—0,3 МПа) наблюдается обратная зависимость, т. е. моноядерные арены гидрируются быстрее. Конденсированные арены с тремя и более кольцами гидрируются последовательно так, что для осуществления каждой следзтощей стадии нужны все более и более жесткие условия. Обычно заметное ускорение реакции наблюдается выше 400 °С, а для протекания процесса нацело необходимы высокие парциальные давления водорода — до 20 МПа. Термодеструктивное расщепление аренов может протекать только через промежуточную стадию гидрирования [c.57]

    Область 1000—000 см В этой области проявляются внеплоскостные деформационные колебания СН-группы и деформационные плоскостные колебания кольца. Число полос и их интенсивность зависят от симметрии молекул. Влияние природы заместителей на интенсивность не определено. Подобно моно-и л-дизвмещенным бензола, имеющим близ 700 см полосы внеплоскостных деформационных колебаний кольца, соответствующие гетероароматические соедиртепия также поглощают в этой области спектра. [c.139]

    Циклогептан в присутствии Pt/ изомеризуется в метилциклогексан, который в свою очередь претерпевает ряд превращений с образованием толуола и бензола кроме того, катализат содержит к-гептан — продукт прямого гидрогенолиза циклогептана [199]. Кинетика и механизм последней реакции описаны в работе [159]. Оказалось, что гидрогенолиз циклогептана и метилциклогеп-тана проходит согласно нулевому порядку по углеводороду. Введение алкильного заместителя в кольцо циклогептана приводит к тем же результатам, что и в случае циклопентанов значительно снижается общий выход продуктов гидрогенолиза, кроме того, практически отсутствует гидрогенолиз по прилежащей к заместителю связи а. Относительные скорости гидрогенолиза над Pt/ различных связей в кольце метилциклогептана, метилциклопентана и этилциклопентана приведены ниже  [c.156]

    Возможность замыкания шестичленного цикла в присутствии Pt/ подтверждена далее на примерах 2,5-диме-тилгексана и н-октана, которые преврашаются в соответствующие арены с тем же числом атомов углерода в молекуле, что и исходные алканы. Так, в первом случае был получен /г-ксилол, во втором — о-ксилол и этил-бензол, поскольку для н-октана имеются две возможности замыкания ароматического кольца  [c.190]

    Во всех случаях наибольший эффект оказывает введение первой двойной связи в кольцо (от 6,8 до 8,9 мл/моль). Введение третьей двойной связи связано примерно с таким же изменением молярного объема (6,4 мл/молъ), как и в табл. 9 при введении в -гексан врутренней двойней связи с образованием траис-конфигурации (6,5 мл/моль). Сопряжение и резонанс связей не оказывает никакого заметного влияния на молярный объем при переходе от циклогексана к бензолу или при соответствующем переходе алкильных производных. [c.244]

    Присоединение длинной боковой алкильной цепи к кольцевой струк-турс сближает свойства молекулы со средними свойствами парафинового ряда [87]. Однако, если рассматривается такой гомологический ряд, в котором отношение числа углеродных атомов в кольцах к числу углеродных n-j Бензол атомов в цепях постоянно, то интер- j,qq. у Цепт рефракции остается практически / постоянным [36, 43]. / [c.257]

    Юнгом, Дювалем и Райтом [52] было обнаружено, что эти полосы являются строго характеристпчнымя для числа и положения заместителей в бензольном кольце и практически не зависят от природы заместителя. Этот спектр поглощения, по-видимому, дополняется частотами обертонов и комбинационными частотами. Обычно с уменьшением числа водородных атомов в кольце вид спектра упрощается. Общий характер поглощения в этой области имеет белее важное значение, чем простое указание положения спектральных полос и приближенные значения интенсивностей. Рис. 7, воспроизводимый из работы Юнга и других [52], дает наглядную картину полос поглощения в области 5—6 л для бензолов с различным типом замещения. [c.327]

    Позднее былц определены скорости реакции термического крекинга тетралина в интервале температур от 425 до 600° С (табл. 9). По этим данным была рассчитана энергия активации, равная 65 калориям на моль, которая аналогична величинам, полученным для парафинов с открытой цепью. Путем сравнения было установлено, что пятичленное кольцо индайа крекируется в два раза медленнее, чем тетралин, что указывает на несколько большую стабильность пятичленного кольца сравнительно с шестичленным. Декалин в аналогичных условиях разлагается еще быстрее, чем тетралин. При температуре 500° С и давлении около 7 ат за IV2 часа разлагалось 95% декалина. Продукт разложения состоял из тетралина, Таблица 9 нафталина, производных бензола и конденсированных продуктов. [c.112]

    Обзор реакций озонирования будет неполным без рассмотрения важных исследований Уибо и его школы ио кинетике озонирования ароматических углеводородов [20, 21]. Озонирование ароматических углеводородов должно протекать подобно озонированию алифатической двойной связи. Но так как в ароматическом кольце нет двойных связей, то некоторые голландские исследователи [9, 10] предположили, что под влиянием поляризованной молекулы озона происходит такое распределение эт-электронов в ароматическом ядре, когда одна пара перемещается к тому углероднод1у атому, который подвергается атаке молекулой озона, а остальные я-электроны распределяются на остальных пяти углеродных атомах углерода, занимая самое низкое энергетическое положение. На основе кинетических изменений, Уибо и другие [1, 18, 23] сообщили, что триозонид бензола образуется в результате трех биомолекулярных реакций, первая из которых протекает значительно медленнее, чем последующие две, и поэтому общая скорость реакции определяется скоростью первой реакции. Константа скорости для бензола нри температуре—30° С была определена в 5 X 10 (миллимоль /мин. ). Механизм реакциимо-жет быть изображен следующим образом  [c.353]


Смотреть страницы где упоминается термин Бензол кольцо: [c.250]    [c.390]    [c.986]    [c.232]    [c.158]    [c.1027]    [c.18]    [c.80]    [c.175]    [c.145]    [c.279]    [c.327]    [c.345]    [c.111]    [c.134]   
Введение в химию окружающей среды (1999) -- [ c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте