Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый водород связь в молекуле

    В молекулах водорода, фтора, хлористого водорода связи одинарные — значит, это о-связи. [c.203]

    Наименее стойкими в отношении процессов старения, естественно, являются полимеры, в молекулах которых содержатся двойные связи, т. е. главным образом соответствующие виды каучуков. Более стойкими являются полимеры, не содержащие двойных связей, но способные к отщеплению хлористого водорода (поливинилхлорид, поливинилиденхлорид, полихлоропрен и др.). Этот процесс может происходить как под действием кислорода или света, так и при нагревании. Уже при 140—180° С отщепляется значительное количество НС1. [c.233]


    Эффективный заряд можно рассматривать как меру поляризации ковалентной связи. Так, расчет, осуществленный на основании рентгеновских спектров поглощения, для хлористого водорода дал следующие значения бн = +0,2, бо =i == —0,2. Можио сказать, что связь в молекуле НС1 примерно на 20%5 [c.72]

    При отрицательных отклонениях парциальные давления компонентов и общее давление пара над раствором меньше, чем в идеальном растворе. Это связано с большей энергией, которая требуется на перевод в газовую фазу молекул данного компонента, окруженных молекулами другого компонента, и наблюдается, когда ав> аа и дв> бв- Смесей с отрицательными отклонениями известно меньше, чем с положительными. В качестве примера можно привести системы вода — хлористый водород, хлороформ — ацетон, хлороформ — бензол. При образовании идеальных растворов теплота смешения равна нулю. При положительных отклонениях наблюдается поглощение тепла, при отрицательных — выделение. [c.118]

    В предыдущем разделе [формула (В.28)] в качестве примера приведена молекула хлористого водорода. Связь в этой молекуле очень сильно поляризована (примерно на 18% ионная связь), в органических же соединениях степень поляризации в большинстве случаев значительно меньше. [c.198]

    Газообразный хлористый водород — полярная молекула с ковалентной связью. Его дипольный момент 1,040, длина связи 0,128 нм (1,28 А). Рассчитайте из этих данных значения частичных зарядов на атомах водорода и хлора, выразив их в долях заряда электрона. [c.10]

    По современным, правда, еще скудным данным о зависимости реакционной способности двойной связи от ее положения в молекуле скорость присоединения хлористого водорода к различным изомерам н-гексена должна быть все же различной. Если возможно распространить данные о зависимости скорости гидрирования олефинов от положения двойной связи [16] на скорость присоединения хлористого водорода, то, пожалуй, будет оправдано предположение, что олефин с концевой двойной связью присоединяет хлористый водород медленнее. Между тем при достаточно долгом взаимодействии концентрированной соляной кислоты все три гексена реагируют количественно. [c.536]

    Молекула хлористого водорода 5-р-а-связь между атомом водорода и атомом хлора [c.51]

    Полимерные реагенты получают или химической переработкой (модифицированием) природных высокомолекулярных соединений, или их синтезом из низкомолекулярных веществ. Известны два синтетических метода полимеризация — реакция соединения молекул, протекающая без изменения элементарного состава реагирующих веществ и выделения побочных продуктов поликонденсация — реакция соединения молекул, сопровождающаяся отщеплением простейщих веществ (ноды, спирта, аммиака, хлористого водорода и др.). В отличие от продуктов полимеризации элементарный состав конденсационного полимера не совпадает с элементарным составом исходных веществ. Синтез полимеров из низкомолекулярных веществ возможен в том случае, если их молекулы могут взаимодействовать вследствие активации с двумя другими молекулами, т. е. если исходное вещество по крайней мере бифункционально. Вещества являются функциональными, если в их молекулах есть двойные или тройные связи и содержатся функциональ- [c.32]


    Какие связи (а- или к-) образуются в молекулах водорода, фтора, хлористого водорода  [c.69]

    Характер связи атомов может изменяться под влиянием среды. Так, ковалентная связь в молекуле хлористого водорода в водном растворе переходит в ионную под влиянием диполей — молекул воды — молекула НС1 разделяется на два иона и СГ. В случае ионной связи один или несколько электронов от одного атома полностью переходят к другому. Положительные и отрицательные ионы, которые при этом получаются, имеют, как правило, устойчивые электронные оболочки и связаны друг с другом только за счет взаимного притяжения. В водных растворах связь между ионами легко разрывается. Положение ионов относительно друг друга редко бывает строго определенным, и молекулярные спектры веществ, имеющие чистую ионную связь, являются обычно мало характерными. [c.286]

    Типичным примером цепной реакции может служить взаимодействие хлора с водородом на свету. Если, хотя бы очень кратковременно, подвергнуть смесь I2 и На интенсивному освещению, то происходит быстрое образование хлористого водорода. Объяснение особенностей кинетики этой реакции состоит в следующем (Нернст). Сначала фотон поглощается молекулой хлора, связь С1—С1 разрывается и [c.250]

    Большое практическое значение имеет присоединение к а-пинену сухого хлористого водорода (синтез камфоры), а также и других безводных кислот. Одновременно с присоединением их к двойной связи а-иинена или непосредственно после этого присоединения происходит перегруппировка, в результате которой углеродный мостик, соединяюшнй в молекуле а-пинена кольцевые атомы углерода 2 и 4, смещается в положение 1, 4. Следовательно, этот процесс представляет собой превращение кольцевой системы пинана в кольцевую систему ка.мфана  [c.841]

    Полярную связь можно рассматривать как нечто промежуточное между чисто ионной и чисто ковалентной. Поведение связанных электронной парой атомов сильно зависит от степени полярности (степени смещения электронов) этой связи. Например, в определенных условиях полярная связь может перейти в ионную, т. е. пара электронов настолько будет смещена к одному из атомов, что в итоге перейдет к нему полностью. Так, хлористый водород, будучи растворен в воде, диссоциирует на ионы. У молекул с полярной связью центры положительных и отрицательных зарядов не совпадают. [c.79]

    В молекулах с одинаковыми атомами оба атома, образующие ковалентную связь, удерживают электроны с одинаковой силой. Электронная оболочка расположена симметрично относительно обоих атомов. Но если ковалентная связь образована двумя разными атомами, то электронная пара смещена в сторону атома, который сильнее притягивает электроны. Например, в молекуле газообразного хлористого водорода НС1 притяжение электронов к атому хлора сильнее, чем к водороду. В таких молекулах один атом оказывается заряженным более отрицательно за счет смещенных электронов, а другой более положительно. Хотя они и образуют в целом нейтральную молекулу, разные ее части заряжены относительно друг друга. Такая молекула является диполем. Мерой разделения зарядов служит величина ди-польного момента, определяемая как произведение расстояния между центрами распределения положительного и отрицательного заряда на величину заряда. Чем дальше оттянуты электроны к одному из атомов, тем сильнее разделены положительные и отрицательные заряды, тем больше дипольный момент. [c.285]

    Реакции конденсации. Реакциями конденсации называются такие реакции уплотнения, при которых происходит образование новых углерод-углеродных связей. Реакции конденсации могут протекать без выделения простых молекул (воды, аммиака, хлористого водорода и т. п.) или же с выделением их. [c.129]

    У каучука, получаемого сополимеризацией с трифторхлорэтиленом, отщепляется, кроме того, хлористый водород (НС1). Выделяющиеся галогеноводороды замедляют вулканизацию и разрушают металлическую и стеклянную аппаратуру. Для предотвращения этих нежелательных явлений в резиновую смесь вводят окислы металлов MgO, СаО, РЬО. Двойные связи, образовавшиеся при выделении галогеноводородов, могут взаимно насыщаться, образуя поперечные связи между цепями молекул. [c.153]

    С наличием хлора в составе молекулы (около 40%) связано другое, присущее этому каучуку преимущество — негорючесть выделяющийся при высокой температуре хлористый водород является гасителем пламени. Из хлоропренового каучука получают резины с высокой прочностью без наполнения сажей, что очень важно, так как большое количество сажи сделало бы резину более горючей. Резины на основе хлоропренового каучука обладают большой стойкостью против действия озона, значительно медленнее старятся, чем резины на основе натурального каучука. [c.196]


    Из уравнения (VI.5) вытекает, что во вращательном спектре двухатомной молекулы имеется серия равноотстоящих спектральных линий, соответствующих разным значениям вращательного квантового числа /. А расстояние между каждыми двумя соседними спектральными линиями равно 2В. Приведем пример расчета длины химической связи в молекуле НС1 из анализа Т К-спектра поглощения. В исследованном вращательном спектре хлористого водорода расстояние между спектральными линиями постоянно и равно в среднем Av= 1,242-Ю 2 с , тогда вращательная постоянная = 0,621 10 2 с-. Из (VI.3) момент инерции / = 2,672-10- °. Согласно (VI.4) длина химической связи в молекуле хлористого водорода определится  [c.176]

    Особым видом взаимного влияния атомов является сопряжение связей (гл. HI, 6). Электроны в тг-связях у молекул с сопряженными связями весьма подвижны, поэтому смещаются они во всей сопряженной системе как в едином целом без значительного затухания. Например, при взаимодействии бутадиена с хлористым водородом электронная плотность перераспределяется в направлении, указанном стрелками  [c.374]

    Свойства комплексов с хлористым водородом соответствуют структуре, в которой молекула хлористого водорода связана свободно с электронным облаком я-электронов, без образования определенной связи между электрофильной группой и каким-либо определенным атомом углерода (XXI). Свойства комплексов с системой хлористый водород — хлористый алюминий (или соответствующих бромидов) согласуются со структурой типа карбоний-иона, в которой протон перешел к кольцу и соединен с определенным атомом углерода (XXII). Следует отметить, что могут образоваться изомерные формы, содержащие протон как в орто- так и в значительно меньшем количестве в ж/иа-положении. [c.401]

    Элиминирование хлористого водорода из молекулы органического соединения с образованием кратной ртлерод-углеродной связи  [c.158]

    Когда химики попытались применить представления атомистической теории к молекулам тех простых неорганических соединений, с изучением которых связаны выдающиеся успехи химии XVIII в., то выяснилось, что такой подход вполне допустим. Достаточно указать различные виды атомов, входящих в состав каждой молекулы, и их число. Молекулу кислорода можно записать как Oj, хлористого водорода — как НС1, аммиака — как NHj, сульфата натрия — как NaaS04 и т. д. [c.74]

    На месте, оставшемся после крушения теории радикалов, Жерар начал строить новое здание, подойдя к органической молекуле не со стороны ее углеродистого радикала, а как бы с противоположной точки зрения со стороны функциональной группы. Не претендуя на познание строения молекулы, опираясь лишь на известные аналогии в поведении веществ, Жерар сформулировал теорию типов, согласно которой органические соединения можно сопоставлять с простейшими неорганическими веществами (водород, хлористый водород, вода, аммиак) и рассматривать их как аналоги неорганических молекул, в которых вместо водорода помещены органические остатки. Теория типов содействовала становлению учения о валентности, поскольку стало ясным, какое число атомов или групп может быть связано с водородом, кислородом, азотом. Максимальной вершины теория типов достигла в работах Кекуле, который установил тип метана и тем самым открыл четырехвалент-ность углерода. Кекуле принадлежит также огромная заслуга в том, что он обнаружил способность атомов углерода насыщать валентность друг друга, т, е. образовывать цепи. И все же Кекуле не сделал решающего шага, необходимого для того, чтобы стать творцом принципиально новой теории последователь Жерара, он продолжал считать химическую конституцию тел непознаваемой, а свои формулы — лишь удобным способом описания некоторых превращений и аналогий веществ. [c.8]

    Карбонилгидрид кобальта, как показано исследованиями Ренне с сотрудниками [45], представляет собой сильную кислоту, способную подобно хлористому водороду присоединяться по месту двойной связи с образованием аддуктов, способных расщепляться па альдегид и кобальткарбониловый радикал. В ходе гидроформилирования всегда в определенном размере происходит изомеризация двойных связей, так что даже если исходят из строго определенных олефинов с двойной связью у конечного атома, альдегиды и соответственно спирты получаются со спиртовой группой, расположенной ближе к центру молекулы. В присутствии карбонилгидрида кобальта направленне изомеризации связей изменяется на обратное. Равным образом при использовании олефинов с двойными связями, располоя енными иа некотором расстоянии от конца молекулы, получаются первичные спирты с гидроксильной группой, стоящей у концевого углеродного атома, так как двойные связи в течение реакции Ройлена передвигаются от центра к периферии молекулы. [c.215]

    Простые реакции преимущественно моно- или бимолекулярные. Одновременное столкновение более чем трех молекул маловероятно. Молекулярность реакции можно связать со стехиометрическим уравнением, когда оно точно отражает механизм реакции, т. е. в случае простых реакций. Например, синтез иодистого водорода H2+I2 —2HI протекает как бимолекулярный акт химического взаимодействия. Стехиометрическое уравнение этой реакции соответствует ее действительному одноэтапному ходу, и на его основе можно определить молекулярность реакции. В случае синтеза хлористого водорода стехиометрическое уравнение типа Нг + СЬ = = 2НС1 не отражает механизма этого многоэтапного процесса. Основываясь на данном уравнении, нельзя определить молекулярность простых реакций, представляющих собой последовательные этапы синтеза хлористого водорода, [c.207]

    Прямое галогенирование нефтяных фракций применяется в небольших размерах либо вообще не проводится. Делалось много попыток вызвать хлорирование с последующим удалением одной или более молекул хлористого водорода при этом преследовалась цель оставить одну и более двойных связей, которые могли бы дать конечным молекулам сушильные и полусушильные свойства. [c.146]

    При комнатной температуре смесь газообразных Н2 иС12М0жн0 хранить длительное время без заметного образования хлористого водорода, хотя процесс энергетически очень выгоден. Это связано с тем, что прямое превращение молекулы Нг и молекулы в две [c.172]

    Ковалентный тип связи наблюдается в молекулах, образованных атомами элементов с одинаковыми или близкими химическими свойствами (например, СЬ, N2, Нг, О2 и т. д.). Однако в зависимости от свойств атомов, входящих в молекулы, различают две разновидности ковалентной связи полярную и неполярную. Примером молекулы с полярной связью может слу кить молекула H l. При образовании молекулы хлористого водорода ИЗ водорода и хлора связь образуется также за счет общей ттаръг электронов. Однако эта пара будет в большей мере принадлежать атому хлора, нежели атому водорода, потому что неметаллические свойства у хлора выражены гораздо сильнее, чем у водорода. Поэтому электронная пара будет несколько смещена к атому хлора. Вследствие этого атом хлора частично зарядится отрицательно, а атом водорода — положительно. [c.79]

    Полярная связь. Выше мы рассмотрели характер химической связи, возникающей между одинаковыми атомами. При этом было очевидно, что образующие связь электроны равномерно распределены вокруг взаимодействующих атомов. Если атомы по своей химической природе различны, образующие связь электроны находятся преимущественно вблизи атомов, обладающих наибольшими значениями электроотрицательиости (см. 6). Такая связь называется полярной, причем мерой полярности служит величина, равная квадрату разности электроотрицательностей взаимодействующих атомов. В качестве примера полярной связи можно указать ца химическую связь в молекулах воды или хлористого водорода. Молекулы с полярной связью являются электрическими диполями и поггроенные из них тела обладают обычно высокими значениями диэлектрической проницаемости. [c.69]

    Молекула НС1 характеризуется ядерным расстоянием d(H l)= 1,28 А, энергией связи 103 /скал, силовой константой 5,2 и довольно значительной полярностью (ц = 1,08). Ионизационный потенциал молекулы H I равен 12,8 в. Хлористый водород плавится при —114°С и кипит при —85 °С, Его крид ическая температура равна -1-51 °С, критическое давление 82 атлг, плотность в жидком состоянии 1,2 г/сж теплота испарения 3,9 ккал/моль. Распад НС1 на элементы становится заметным примерно с 1500 С. [c.258]

    Охлаждением концентрированных водных растворов хлористого водорода могут быть выделены кристаллогидраты НС1 с 6, 3, 2 и 1 молекулами НгО, плавящиеся с разложением соответственно при —70, —25, —18, —15 °С. Последний из них по структуре является хлоридом оксония (HjO+ b), в кристаллогидрате НС1-2Н20 четко выявляются катионы Н О с очень короткой водородной связью [ (00) = 2,41 А] между двумя молекулами воды, а структура тригидрата соответствует формуле HjO r-HjO. С жидким хлором хлористый водород дает молекулярные соединения состава СЬ 2НС1 и СЬ-НС1, плавящиеся соответственно при —121 U—I15T. [c.259]

    Аналогичное цианистому водороду соединение фосфора —НСР— частично образуется в процессе пропускания РНз сквозь элёктрическую дугу с графитовыми электродами. Для молекулы Н—С Р определены значения d(H ) - 1,07, /с(НС) = = 5,7, d( P) = 1,54 А, к(СР) = 8,9 и ц = 0,39. Вещество это представляет собой устойчивый лишь ниже своей тройной точки (—124 °С) бесцветный газ, самовоспламеняющийся на воздухе. Взаимодействие его с хлористым водородом идет по уравнению НСР + 2НС1 - H3P I2. Уже при —78 °С из НСР быстро образуется черный полимер. Длина простой связи С—Р равна 1, 85 А. [c.521]

    Детальное рассмотрение химических процессов с молекулярнокинетической точки зрения показывает, что большинство из них протекает по так называемому радикально-цепному механизму. Особенность цепных реакций заключается в образовании на промежуточных этапах свободных радикалов — нестабильных фрагментов молекул с малым временем жизни, имеющих свободные связи -СНз, -СгНа, С1-, N , HOj- и т. п. Связанная система сложных реакций, протекаюищх г.оследовательно, параллельно и сопряженно с участием свободных радикалов, называется цепной реакцией. По цепному механизму развиваются многие процессы горения, взрыва, окисления н фотохимические реакции. Значение цепных реакций в химии и в смежных с нею областях науки (биологии, биохимии) очень велико. Выдающаяся роль в изучении цепных процессов принадлежит советскому ученому акад. Н. Н. Семенову, сформулировавшему основные закономерности протекания таких реакций. Основные стадии цепных реакций зарождение цепи, продолжение цепи, разветвление цепи и обрыв цепи. Зарождение цепи — стадия цепной реакции, в результате которой возникают свободные радикалы нз валентно-насыщенных молекул. Эта стадия осуществляется разными путями. Так, при синтезе хлористого водорода из водорода и хлора образование радикалов осуществляется за счет разрыва связи С1—С1 (по мономолекулярному механизму) под воздействием кванта света b + Av l- +С1-. А при окислении водорода зарождение цепи происходит за счет обменного взаимодействия по бимолекулярному механизму Н2-гО = Н--f-НОг. Образование свободных радикалов можно инициировать введением посторонних веществ, обладающих специфическим действием (инициаторов). В качестве инициаторов часто используют малостабильные перекисные и гидроперекисные соединения. [c.219]

    Электролитическая ионизация вызывается взаимодействием полярных молекул растворителя с частицами растворяемого вещества. Это взаимодействие приводит к поляризации даже преимущественно ковалентных связей, как, например, в хлористом водороде. При растворении этого газа в воде происходит образование ионов водорода и хлора за счет ослабления связи Н—С1 в среде с большой диэлектрической постоянной. Переход ионов в раствор сопровожда- егся их гидратацией  [c.256]

    Координационное взаимодействие кадмия с атомом хлора молекулы хлорангидрида с частичной поляризацией связи С—С1 (VII) сопровождается электрофильной атакой кольца и приводит к образованию биполярного иона VIII, стабилизованного в основном за счет резонанса с участием метоксильной группы. Биполярный ион отщепляет молекулу хлористого водорода, и образуется соединение X, которое при гидролизе превращается в кетон VI. [c.390]


Смотреть страницы где упоминается термин Хлористый водород связь в молекуле: [c.267]    [c.153]    [c.235]    [c.355]    [c.498]    [c.678]    [c.174]    [c.340]    [c.41]    [c.171]    [c.328]    [c.85]    [c.847]   
Аккумулятор знаний по химии (1977) -- [ c.51 ]

Аккумулятор знаний по химии (1985) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Водород связь в молекуле

Водород хлористый, тип связей

Молекулы водорода

Молекулы связь

Хлористый водород



© 2025 chem21.info Реклама на сайте