Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Асбест, как носитель

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    В контактном процессе используются твердые катализаторы платина (5—10 вес. %), осажденная на асбесте, или предпочтительно пятиокись ванадия, промотированная щелочью и осажденная на носителе из пемзы или кизельгура. Эти катализаторы сопоставлены с железным катализатором на рис. 1Х-10. [c.327]

    Очень часто катализаторы используют на инертных носителях углях, термостойких материалах, пемзе, кизельгуре, асбесте, что увеличивает степень дисперсности и механическую прочность. [c.243]

    В качестве носителей для катализаторов применяют широкий круг веществ, которые обычно специально не получают для целей катализа, а только подвергают некоторой очистке и активации. Сюда относятся, например, активный уголь, пемза, кизельгур, асбест и др. [c.187]

    Для увеличения поверхности катализатора, и тем самым, числа активных центров его нужно тонко измельчить. Чтобы частицы катализатора не уносились и не создавали большого сопротивления прохождению газообразной реакционной смеси, его наносят (осаждают) на инертный носитель с развитой поверхностью (силикагель, асбест, пемза и т. д.). [c.226]

    Носители или трегеры — пористые, термостойкие, каталитически инертные материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При нанесении каталитических веществ на пористый носитель достигается их тонкое диспергирование, создаются большие удельные поверхности при размерах пор, близких к оптимальным п увеличивается термостойкость катализатора, поскольку затруднено спекание его кристалликов, разобщенных на поверхности носителя. При таком методе нанесения достигается экономия дорогих катализаторов, например, платины, палладия, серебра. Носитель, как правило, влияет на активность катализатора. Естественно, что применяются носители не понижающие активность, а повышающие ее. Таким образом, нет точной границы между понятиями — активатор и носитель. Наиболее часто в качестве носителей применяют окись алюминия, силикагель, синтетические алюмосиликаты, каолин, пемзу, асбест, различные соли, уголь. [c.123]

    Катализаторы могут быть изготовлены как на носителях с малой удельной поверхностью (диатомит, пемза, асбест), так и с высокоразвитой поверхностью (у-АЬОз, MgO, силикагель, глины, алюмосиликаты) [93—95]. [c.135]

    Специфическим катализатором изомеризации окиси пропилена в аллиловый спирт является фосфорнокислый литий, используемый в виде суспензии или на носителе. В последнем случае катализатор на /3 по массе состоит из фосфата лития и на 1/э — из измельченного активированного асбеста или талька. [c.82]


    Катализаторы могут быть изготовлены на носителях с малой удельной поверхностью (диатомовые земли, пемза, асбест) и с высокоразвитой удельной поверхностью (окислы алюминия, магния, кремния, активированные глины, синтетические аморфные и кристаллические алюмосиликаты). В промышленности наиболее широко распространены носители с развитой удельной поверхностью, и в первую очередь активная окись алюминия, синтетические аморфные и кристаллические алюмосиликаты. [c.66]

    Носителем (трегером) называется материал, на который наносят катализатор с целью увеличения его поверхности, придания массе пористой структуры, повышения ее механической прочности и снижения себестоимости контактной массы. В качестве носителей в контактных массах используются пемза, асбест, силикагель, кизельгур, пористая керамика. [c.129]

    При пр именении или изготовлении катализаторов часто пользуются так называемыми носителями (или трегерами) —инертными пористыми веществами, Которые (или пропитывают каталн-затором, если катализатор жидкий, или на сильно развитую поверхность которых чрезвычайно тонким слоем наносят твердый катализатор, например осаждением в виде окиси из раствора соответствующей ооли. если нужно, осажденная окись может быть восстановлена до металла. В качестве нО Сителя используются разнообразные пористые вещеста, как-то глины, искусственно осажденные окиси алюминия или кремния, пемза, инфузорная земля, актив ированный И древесный уголь, асбест и т. д.  [c.117]

    Прекрасными дегидрирующими катализаторами, лишенными недостатков N1, являются и Рс1 сами по себе или на нейтральных носителях угле, пемзе, сернокислом барии, асбесте, гидроокиси алюминия [3]. [c.253]

    Применение катализаторов на носителях повышает их устойчивость и сопротивляемость контактным ядам. Носителями для катализаторов являются активированный уголь, асбест, пемза, кизельгур, каолин, шамот и т. д. Катализаторы платиновой группы осаждают часто на активированный уголь, асбест, окись магния, сульфат бария. [c.339]

    Например, когда катализатором служит железо, нанесенное на уголь, асбест или алюмогель, на поверхности носителя образуются ансамбли, состоящие каждый из нескольких атомов х<елеза. Для синтеза аммиака, например, необходимы ансамбли, состоящие из трех атомов железа. [c.165]

    Теория активных ансамблей Н. И. Кобозева. Активным началом на нанесенном катализаторе является активный ансамбль, т- е. группа атомов катализатора, адсорбированных на поверхности носителя (асбест). Активный ансамбль состоит из двух-трех атомов катализатора. Если вещество сильно диспергировано, вероятность возникновения любых ансамблей очень мала. При высокой концентрации возникают ансамбли из большого числа атомов. Следовательно, нужна некоторая средняя концентрация для образования ансамблей из двух — трех атомов (рис. 172). Для выяснения механизма катализа по методу Кобозева измеряют зависимость удельной активности катализатора от его концентрации на носителе. [c.399]

    Широкое применение в химической промышленности находит гетерогенный катализ. Большая часть продукции, вырабатываемой в настоящее время этой промышленностью, получается с помощью гетерогенного катализа. При гетерогенном катализе реакция протекает на поверхности катализатора. Отсюда следует, что активность катализатора зависит от величины и свойств его поверхности. Для того чтобы иметь большую ( развитую ) поверхность, катализатор должен обладать пористой структурой или находиться в сильно раздробленном (высокодисперсном) состоянии. При практическом применении катализатор обычно наносят на носитель, имеюш,ий пористую структуру (пемза, асбест и др.). [c.200]

    Нанесенный на асбест, фарфор или другие носители, палладий служит катализатором ряда окислительно-восстановительных реакций. Это его свойство используется как в лаборатории, так и в промышленности при синтезе некоторых органических соединений. Палладиевый катализатор применяют для очистки водорода от следов кислорода, а также кислорода от следов водорода. [c.532]

    На практике часто используются так называемые адсорбционные катализаторы, приготовленные путем нанесения катализатора на специальный носитель из неактивного материала. В качестве носителя часто используется асбест, уголь, силикагель, пемза, фарфор и др. Адсорбционные катализаторы позволяют достичь значительной экономии дорогостоящих веществ и обладают повышенной устойчивостью к нагреванию и действию ядов. [c.350]

    В химической промышленности наиболее широкое применение находит гетерогенный катализ. В этом случае катализатор представляет собой твердое вещество и реакции, следовательно, протекают на его поверхности. Из этого становится понятным чем больше поверхность катализатора, тем выше его активность. Вот почему твердые катализаторы должны иметь пористую структуру или в сильно раздробленном состоянии наноситься на пористый носитель, например на асбест. [c.121]


    Для визуального наблюдения осадочных хроматограмм желательно, чтобы носитель имел светлую окраску. В качестве носителей применяют силикагель, крахмал, окись алюминия, гидроокись алюминия, сернокислый барий, кварц, асбест, аниониты ТН, ММГ-1, катиониты МСФ, СБС, двуокись кремния, двуокись титана, карбонат кальция, стеклянный порошок, отбеливающую глину, бентонит, сульфоуголь. Можно применять и другие пористые среды, например песок, кизельгур, гипс и другие вещества. [c.258]

    Для большей эффективности гетерогенного катализатора необходимо, чтобы он обладал высоко развитой поверхностью. Удельную поверхность катализатора увеличивают, применяя его в виде тонкоизмельченного порошка. Для уменьшения механических потерь катализатора в виде пыли часто применяют трегеры — высокопористые инертные носители (асбест, пемзу и т.п.), поверхность которых покрывают слоем катализатора. [c.138]

    Недавно было опубликовано сообщение [217], что в присутствии специального катализатора на основе окиси магния (точный состаз катализатора не сообщается) возможно при соответствующих условиях проводить с высокими выходами взаимодействие с аммиаком хлористых алкилов, в том числе и сравнительно высокомолекулярных (хлористый нонан и хлористый додекан) в газовой фазе при температуре около 310° и нормальном давлении. Молярное отношение хлористого алкила и аммиака составляет около 1 2. В то время как на всех других катализаторах, например окислах кобальта или никеля или солях этих металлов на асбесте, древесном угле, пемзе или силикагеле, в качестве носителей образуются, как показал предыдущий о пыт, глдвным сбразом олефиновые углеводороды, на катализаторах на основе окиси магния достигаются весьма хорошие результаты, правда, при применении первичных хлоридов. Даже чрезвычайно термически нестойкий хлор-циклогексан поразительно хорошо реагирует при 340°. [c.232]

    В качестве носителя для катализатора лучше всего применять кислые соединения, так как при цспользовании нейтральных носителей, напрнмер активированного угля, могут образоваться алкил-фосфаты, которые затем улетучиваются. Наиболее употребительны в этой роли кизельгур и асбест однако в этом случае усиливается образование кремнефосфатов (правда они нелетучи). На эти носители можно наносить до 75% фосфорной кислоты. [c.242]

    Носители с малым размером частиц (от 0,1 до 10 мк), непористые и с большой удельной поверхностью (2—20 мУг). Примеры асбест и дишенты, такие как сажа, каолин, окись железа, окись титана и окись цинка. [c.307]

    Нанесенный на асбест, фарфор или другшг носители, палладий служит катализатором ряда окислительно-восстановительных реакций. Это его свойство используется как в лабораториях, так и в [c.699]

    В катализаторах на носителях необходимо следить аа структуроД слоя активного компонента, покрывающего носитель. Так, Шехтер, Рогинский и Исаев [43] показали съемкой в электронном микроскопе, что в платино-асбестовом катализаторе платина находится на асбесте в виде сферолитов различной величины. Адлер и Кивней [441 нашли для платино-глиноземного катализатора, что в зависимости от метода нанесения платина различным образом располагается на окиси алюминия, образуя монослой при пропитке и сферические дискретные частицы при соосаждении. В общем, дисперсность активного компонента в нанесенных катализаторах может варьироваться в достаточно широких пределах и тем самым определять свойства катализатора. Поэтому для таких катализаторов нужно иметь [c.197]

    В настоящее время в общем газовом анализе часто применяют сжигание свободным кислородом в присутствии катализаторов. Из больного числа исследованных катализаторов наилучшие результаты получены с металлическими платиной и палладием. Пал.тгадий и платину применяют в виде проволочной спирали, впаянной в верхнюю часть стеклянной шшетки (рис. 4), или в осанчденнсм виде на носителях (асбест, активированный уголь, керамика), С лучшими образцами катализаторов этого типа [2,31 водород количественно окисляется при комнатной температуре, а метан сгорает при 400—500° С. [c.29]

    В США прямое окисление природного газа осуществляют две фирмы. Фирма Ситиз сервис ойл компани имеет установку в г. Таллант (шт. Оклахома), на которой природный газ окисляют при умеренных температуре и давлении в смесь равных весовых количеств метилового спирта и формальдегида. Наряду с ними образуются в меньших количествах ацетальдегид и метилацетон схему этой установки см. в работе [10]. Согласно опубликованным патентам [11], природный газ, содержащий j—С4-угле-водороды, смешивают с 10 об.% воздуха и пропускают при 460° и 20 ama над твердым контактом. Первоначально катализатором служил платинированный асбест позже стали применять смесь фосфата алюминия и окиси меди на инертном носителе. Продукты окисления выделяли охлаждением газовой смеси, которую в заключение промывали при 0° частью конденсата, образовавшегося при охлаждении. Природный газ окислялся неполностью, тогда как кислород реагировал целиком отходящие газы либо возвращали обратно, смешивая со свежими порциями природного газа и воздуха, либо сжигали. Жидкие продукты реакции содержали в среднем 5—6% ацетальдегида, 34—36% метилового спирта, 20—23% формальдегида, воду и небольшие количества кислородных соединений более высокого молекулярного веса. Время реакции не превышало нескольких секунд, иногда даже меньше 1 сек. температуру реакции регулировали подогревом входящего в реактор газа до температуры на 50° ниже рабочей. Для максимального выхода формальдегида давление не должно было превышать 20 ат при 50 ат основным продуктом являлся метиловый спирт. В патентах указывается, что большая часть метана не реагирует и получаемые продукты образуются в результате окисления высших углеводородов. [c.72]

    Осаждение катализаторов на носители стало известным с первой четверти XIX в., когда И. Деберейнер впервые применил платиновую спираль и гончарную глину для осаждения на них платиновой черни при изучении превращений различных газов (эвдиомепг-рия). Позднее было доказано, что носителями могут быть многие пористые вещества уголь, асбест, пемза, тальк, кизельгур, глинозем, [c.82]

    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    П а л л а д и й — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рё + %02 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем платина. Характерные особенности палладия — устойчивость в степени окисления +2, способность поглощать водород (до 800 объемов на 1 объем Рс1). При поглощении водорода объем металла заметно увеличивается, он становится более хрупким и ломким. Палладий широко используется как катализатор целого ряда химических реакций (его наносят на фарфор, асбест или другие носители). Сплавы палладия применяются в электротехнике, радиотехнике и автоматике как электроэмиссионные и другие материалы. Так, сплавы палладия с серебром идут для изготовления электрических контактов сплавы палладия с золотом, платиной и родием используются в термопарах и терморегуляторах. [c.299]

    При гетерогенном катализе реакция происходит на поверхности раздела фаз, причем решающую роль играет строение поверхности твердого вещества-катализатора. В первую очередь она должна быть большой, чтобы обеспечивать достаточную величину реакционной зоны. Поэтому твердый катализатор стремятся приготовить как можно в более раздробленном состоянии. В то же время использование пылевидного материала непригодно по технологическим соображениям. И в качестве катализаторов применяются или высокопористые вещества (например, активированный уголь — уголь, приготовленный путем пиролиза из природного угля или чаще древесины, кости, так, что в нем сохраняется жесткий углеродный скелет, пронизанный большим числом пор силикагель — диоксид кремния, изготовленный осторожным обезвоживанием кремниевой кислоты, так что в нем сохраняется кремнекислородный скелет так называемый никель Ренея, получаемый обработкой щелочью никельалюмипиевого сплава, при которой растворяется алюминий и остается компактный, но содержащий большой объем пор никель, и т. д.), или вещества, нанесенные на высокопористые носители (медь на угле, палладий на асбесте и др.). [c.220]


Смотреть страницы где упоминается термин Асбест, как носитель: [c.245]    [c.148]    [c.351]    [c.174]    [c.177]    [c.136]    [c.431]    [c.293]    [c.293]    [c.175]    [c.32]    [c.293]    [c.288]    [c.333]    [c.183]   
Структура металических катализов (1978) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Асбест



© 2025 chem21.info Реклама на сайте