Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ кислотой в целом

    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]


    Каждый из первооткрывателей каталитических реакций находил свои, главным образом чисто физические, объяснения к наблюдаемым им явлениям. И хотя все эти объяснения в конечном счете были направлены к одной цели — найти причины неучастия масс катализатора в стехиометрических уравнениях, цельного представления о катализе не существовало вплоть до 3 -х годов XIX в. Лишь в 30-х годах появились попытки объединить известные тогда отдельные каталитические реакции [1, 2] в одно целое. Наиболее удачной из этих попыток явилось обобщение Берцелиуса [3], открывшее в химии эпоху катализа. Несмотря на различные формы каталитических явлений, Берцелиус увидел в них некое единство, имеющее важное значение в химии. Превращение сахара в углекислоту и спирт под влиянием ферментов, разложение перекиси водорода в присутствии платины, гидролиз с помощью серной кислоты крахмала до сахара и, наконец, многочисленные химические процессы, совершающиеся в живой природе, он объединил одной общностью причин и назвал эту общность каталитической силой, или каталитической способностью вещества. Берцелиус показал, что эта сила (теперь бы мы сказали каталитическая активность, что совершенно не изменяет существа дела), свойственна как неорганической, так и органической природе [3]. Он не дал и не мог дать объяснений ее природы. Однако указал на то, что каталитическая способность многих как простых, так и сложных тел в твердом виде и в форме раствора является одним из проявлений электрохимических отношений материи [3]. [c.8]

    Известно, что реакции карбонильной группы с нуклеофильными реагентами катализируются кислотами благодаря присоединению кислоты к основному карбонильному кислороду и возрастанию вследствие этого полярности карбонильной двойной связи. Катализ кислотами может осуществляться или переносом протона, или под действием кислоты в целом. При проведении деструкции в сухих, неполярных растворителях, хотя и при высокой температуре (220° С —условия синтеза полиарилатов), явного присутствия протонов в реакционной смеси нет, и скорее всего здесь имеет место общий кислотный катализ под действием недиссоциированной кислоты  [c.184]

    Ниже будет видно, что в условиях общего катализа кислотами и основаниями можно получить информацию о скорости переноса протона между катализатором и субстратом в одном направлении. В то же время при рассмотрении в гл. 7 прямых методов, было показано, что наблюдаемые изменения всегда отражают и прямой и обратный процессы, причем определяющим является наиболее быстрый. Итак, исследования общего кислотно-основного катализа дают возможность изучения медленного прямого переноса протона, даже при очень быстрой обратной реакции. То же самое справедливо для изотопного обмена и реакций рацемизации, которые интенсивно используются для целей исследования реакций переноса протона. [c.174]


    Указанные реакции служат иллюстрацией катализа кислотой в целом. В реакции, катализируемой кислотой в целом, скорость зависит от концентрации всех частиц кислоты в данном растворе, а не от концентрации ионов водорода. В такой реакции активным субстратом является не сопряженная кислота карбонильного соединения, а комплекс, образованный этим карбонильным соединением и кислым катализатором. [c.318]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]

    С целью удаления ароматических углеводородов, образовавшихся в результате катализа, катализат обрабатывался серной кислотой, которая бралась в количестве 25% к объему катализата полнота деароматизации проверялась формолитовой реакцией [17]. [c.77]

    Получение аммиака, серной и азотной кислот, каталитический крекинг, нефтехимический синтез и синтез мономеров, получение синтетического каучука и многих других полимеров, синтез целого ряда растворителей, а также полупродуктов красочной, пищевой и фармацевтической промышленности основаны на катализе. В биохимии органическими катализаторами высокого избирательного действия являются ферменты. [c.4]

    Галогенированию подвергаются не сами альдегиды или кетоны, а соответствующие енолы или енолят-ионы. Цель катализа заключается в том, чтобы обеспечить образование небольшого количества енола или енолята. Для этого достаточно присутствия следов кислоты или основания, которые всегда имеются, даже если не добавлять их специально или проводить реакцию в газовой фазе [89]. Механизм реакции, катализируемой кислотой, можно представить следующим образом  [c.430]

    Последние десятилетия характеризуются целым рядом существенных достижений в изучении молекулярных основ жизни. Весьма глубокие представления сложились сейчас в области молекулярных аспектов наследственности, структуры белков и нуклеиновых кислот. Физико-химические исследования каталитических функций белков создали детализированную картину молекулярных процессов, протекающих при ферментативном катализе. [c.198]

    В последние годы на границе между физической и органической химией выкристаллизовывается интереснейшая и увлекательнейшая наука — каталитическая химия. Она тесно связана, с одной стороны, с теорией строения вещества и теорией химических процессов, а с другой стороны, — с практикой. До 80% современной тяжелой химической промышленности и почти вся биохимия являются применением катализа. Получение аммиака, серной и азотной кислот, каталитический крекинг, нефтехимический синтез, получение синтетического каучука и многих других полимеров, синтез целого ряда растворителей, а также полупродуктов красочной, пищевой и фармацевтической промышленности основаны на катализе. В биохимии ферменты являются органическими катализаторами высокого избирательного действия. [c.3]

    Перемещение двойных связей у ненасыщенных кислот зависит главным образом от структуры молекул этих соединений, которые при нагревании (200° или выше) изомеризуются в более устойчивую изомерную форму. Катализ щелочью обеспечивает высокую степень изомеризации ненасыщенных жирных кислот и позволяет значительно снизить температуру реакции. Для этой цели часто применяют концентрированные растворы едкого кали или едкого натра при температуре около 100°. Изомеризация этого типа подробно исследована Линстедом с сотрудниками. Ниже приведены уравнения некоторых характерных реакций  [c.181]

    С ВЫХОДОМ 7% от образовавшихся кислот и карбонильных соединений соответственно. Как известно, при цепном окислении атаке подвергаются вторичные и третичные атомы углерода, а концевые метильные группы в реакцию не вступают [90]. Было показано, что в реакциях окисления некоторых парафинов и олефинов на твердых полупроводниковых и металлических катализаторах добавки ингибиторов, например гидрохинона, значительно замедляют скорость реакции. Сначала скорость реакции падает пропорционально добавке ингибитора, но, начиная в некоторого момента, она становится постоянной и не равной нулю, что однозначно доказывает наличие неценного поверхностного процесса. Из изложенных фактов можно сделать вывод, что в случае жидкофазного окисления углеводородов на твердых катализаторах мы имеем дело с гетерогенно-гомогенным процессом, причем доля объемного продолжения здесь весьма значительна. Выход радикалов с поверхности в объем вероятен по соображениям, излагаемым ниже. Вероятна также, вследствие наличия ближнего порядка в жидкостях, эстафетная передача свободной валентности аналогично тому, как это происходит со свободными радикалами в чисто цепных реакциях при протекании реакции в клетке из окружающих радикал молекул растворителя. При применении истинно инертного растворителя эстафета обрывается и скорость реакции замедляется с разбавлением, ка то бывает в газофазных процессах. В целом можно предположить, что при поверхностном радикальном механизме гетерогенных каталитических реакций степень выхода реакций в объем зависит от соотношения скорости передачи свободной валентности в объем и скорости превращения радикалов на поверхности. Видимо, в газофазных процессах, протекающих при высоких температурах, условия более благоприятствуют превращению радикалов, в то время как в ряде жидкофазных реакций создаются условия, увеличивающие вероятность передачи свободной валентности в объем. Таким образом, как это часто имеет место в гетерогенном катализе, нельзя говорить, подобно М. В. Полякову [93], о каком-то специальном гетерогенно-гомогенном механизме катализа, а можно говорить лишь о соответствующей области протекания процесса в результате сложившихся соотношений скоростей различных его стадий. [c.62]


    Катионы аминов также катализируют некоторые реакции путем образования промежуточных иминов 15]. Например, ионы анилиния катализируют синтез семикарбазонов из производных бензальдегида [уравнение (7.20)]. Активность этих катализаторов в 10—1000 раз выше активности других сопоставимых по силе кислот. На промежуточное образование иминов в ходе катализа указывает целый ряд факторов. 1) В разбавленных растворах семикарбазида Ы-бензилидинанилины диссоциируют на альдегид и семикарбазон, причем относительное содержание семикарбазона зависит от концентрации семикарбазида. 2) За исключением сильно разбавленных растворов, скорость катализируемого ионами анилиния образования семикарбазона не зависит от концентрации семикарбазида, и скорость катализируемого ионами анилиния образования семикарбазона практически целиком определяется скоростью образования имина. 3) Скорость катализируемого ионами анилиния образования семикарбазона совпадает со скоростью катализируемого ионами анилиния образования оксимов. Таким образом, все эти данные дают достаточно оснований считать, что катализ ионами анилиния осуществляется по нуклеофильному механизму. [c.170]

    Первоначально изучение катализа кислотами и основаниями проводилось главным образом с целью выяснения общих вопросов физической химии. Так, например, первая правильная формулировка кинетических законов реакций первого порядка была дана Виль-гельми в 1850 г. в связи с измерениями каталитической инверсии тростникового сахара под действием кислоты [1]. Каталитические реакции сыграли также важную роль в создании в конце XIX в. классической теории электролитической диссоциации. Зависимость между электропроводностью электролитов и каталитической активностью растворов кислот была удачно объяснена большой подвижностью и каталитической активностью ионов водорода [2] измерения скорости каталитических реакций (в частности, гидролиза эфиров) стали широко применяться для исследования состояния растворов электролитов. [c.5]

    Случаи, при которых неорганические и органические соединения присоедиияются к двойной и тройной связи, вообще весьма многочисленны и включают целый ряд реакций, которые целесообразно как-то систематизировать. Реакции присоединения водорода были рассмотрены в главе о гидрировании, присоединение галогенов, галогеноводородов и хлорноватистой кислоты— в разделе галогенирования, присоединение хлористого. нитрозила—ир,и описании реакции иитрозировавия, присоединение бисульфита — в разделе сульфонирования. Поэтому нам остается описать некоторые реакции присоединения неорганических соединений, например воды и аммиака, и целого ряда органических веществ, которые при присоединении могут образовывать связь между двумя атомами углерода или между атомом углерода и другого элемента. Некоторые реакции (присоединения протекают самопроизвольно, однако большинство из них нуждается в катализе кислотами, щелочами или радикалами. [c.211]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    Достижением катализа является окислеиие нафталина во фталевый ангидрид в паровой фапе. Фталевый ангидрид необходим в больших количествах для синтеза глифталевых смол, красителей и для других целей. В XIX в. его получали окислением нафталина в жидкой фазе действием хромового ангидрида или азотной кислоты, чк. требовало сложной и стойкой к коррозии аппаратуры. В конио прошлого столетия был разработан каталитический метод окисления с Н2304 в присутствии солей ртути, страдающий, однако, темп же недостатками, что и первый из названных методов. [c.225]

    С 1812 г., со времени открытия К. С. Кирхгофом реакции гидролиза крах.мала под влияние.м ггезпачнтельного количества серной кислоты, наблюдал Берцелиус за ходом первых каталитических открытий. Разложение аммиака на металлах, осуществленное в 1813 г. Л. Тенаром окисление метана кислородом воздуха на платине, открытое в 1817 г. Г. Дэви самовозгорание водорода и органических веществ на платине, обнаруженное в 1820—1822 гг. и Деберейнером,— все это Берцелиус объединил в 1835 г. в одно целое, назвал катализом и увидел в нем связующее звено между неорганической и живой природой. [c.172]

    По существу, целью всех многочисленных теорий катализа, которые начали появляться еще в прошлом столетии, было предвидение каталитического действия. Но, пожалуй, началом решения этой задачи следует считать рекомендации по подбору катализаторов, которые содержались в мультиплетной теории А. А. Баландина, теории активных центров X. С. Тэйлора и 3. К. Ридила, в классификации каталитических процессов С. 3. Рогинского, а затем в ряде электронных теорий. В результате появились более или менее общие и проверенные выводы о специфическом характере каталитического действия определенных, правда, довольно обширных групп катализаторов, например, для реакций гидро- и дегидрогенизации, окисления, галогенироваиия — металлы и оксиды металлов— полупроводники для реакций гидратации — дегидратации, гидрогалогенирования, алкилирования алкилгалогенидами — бренстедовские и льюисовские кислоты и основания. Но подбор [c.248]

    Гидролиз сложных эфиров обычно катализируется как кислотами, так и основаниями. Поскольку группа 0R обладает более слабыми нуклеофугпыми свойствами, чем галогены или O OR, вода не гидролизует большинство сложных эфиров. При катализе основаниями атакующей частицей служит более сильный нуклеофил — ОН-группа. Эта реакция носит название омыления и приводит к соли кислоты. Кислоты катализируют реакцию за счет того, что положительный заряд атома углерода карбонильной группы становится больше, и, следовательно, он легче подвергается атаке нуклеофилом. Обе реакции обратимы, и поэтому практической ценностью обладают только тогда, когда равновесия удается каким-либо способом сместить вправо. А поскольку образование соли — один из таких способов, гидролиз сложных эфиров в препаративных целях почти всегда проводят в щелочных растворах, за исключением тех [c.109]

    Гликоли легко расщепляются в мягких условиях и с хорошими выходами при действии йодной кислоты или тетраацетата свинца [126]. Продуктами реакции могут быть 2 моля альдегидов, или 2 моля кетонов, или по одному молю каждого из этих соединений в зависимости от того, какие группы соединены с двумя рассматриваемыми атомами углерода. Выходы настолько высоки, что олефины часто превращают в гликоли (т. 3, реакция 15-36) и затем расщепляют действием HIO4 или РЬ(0Ас)4 вместо того, чтобы проводить прямое расщепление озоном (реакция 19-9), или бихроматом, или перманганатом (реакция 19-10). Ряд других окислителей приводит к тем же продуктам. Среди них активированный диоксид марганца [127], соли таллия (П1) [128], хлорохромат пиридиния [129], а также О2 при катализе солями Со(И1) [130]. Перманганат, бихромат, N-иодосукцинимид [131], N-бромосукцинимид — трифенилвис-мут [132], триацетат иода [133] и некоторые другие окислители также расщепляют гликоли, давая карбоновые кислоты, а не альдегиды, однако эти реагенты редко используются в синтетических целях. [c.276]

    Цикл Кребса может служить примером двух уровней катализа в биологических системах. Во-первых, это ряд ферментов, которые катализируют различные реакции. Во-вторых, весь процесс в целом является каталитическим, так как одна молекула щаввлевоуксусной кислоты заставляет функционировать много молекул ацетилкофермента А. [c.191]

    Дегидратацию спиртов с целью получения соответствующих олефинов провидят при катализе фосфорной кислотой па носителях или оксидом алюминия. В лабораторных условиях га- к)об(1йЗные олефины можно получать по реакциям  [c.226]

    Нередко возникает вопрос о том, выполняет ли катализатор функцию переносчика протона или нуклеофильного агента. Особенно сильно эта неоднозначность проявляется в реакциях с участием производных карбоновых кислот, поскольку в таких реакциях наблюдается одновременно и общеосновной, и нуклеофильный катализ. Чтобы показать, каким образом решается Эта проблема, рассмотрим методы, применяемые при изучении таких реакций с целью отличить общий основной катализ от нуклеофильного [И]. [c.108]

    С целью получения новых сведений по обсуждаемому вопросу мы исследовали катализ ряда нротолитических реакций окисленными углями, поверхностные кислотные группы которых обладают резко повышенной протоногенностью и соответственно каталитической активностью [1]. Особенно детально были нами изучены кинетика и механизм парофазного синтеза уксуснобутилового эфира на окисленном кислородом угле из фенолформальдегидной смолы. Сравнительно несложные расчеты показали, что при избытке кислоты в реакционной смеси в катализе участвует только 4,6%, а при избытке спирта — всего лишь 2,4% общей поверхности угля. [c.334]

    Химические свойства и технологическое применение жиров обусловлены их строением Практическое значение имеют три технологических процесса, связанные с жирами Гидролиз (омыление) жиров осуществляется с целью получения жирных кислот, натриевых, реже калиевых солей жирных кислот (мыла), глицерина Твердые природные гидрогенизированные жиры обычно подвергают гидролизу водяным паром при 140-150 С и 0,7-0,8 МПа в присутствии 0,6% окиси цинка в течение 8 часов или в условиях кислотного (сульфокислоты, H2SO4) или щелочного (NaOH) катализа [c.712]

    Первой стадией процесса явтяется сжигание сероводорода с получением SOj Во второй стадии на ванадиевом катализаторе SO, окисляется в S0, Третьей и конечной стадией процесса явтяется охпаждение и конденсация серной кислоты Весь процесс в целом потучил название метода мокрого катализа, так как контактное окиспение производится в присутствии водяных паров [c.290]

    Особенно полезным оказался метод гомогенного катализа для окисления изобутана в гидроперекись трет-бутла в присутствии бромистого водорода [338]. Выход гидроперекиси достигает 70%. Если процесс вести приблизительно при 160° и соотношении компонентов смеси изобутан—кислород—бромид, равном 10 10 1, то выход гидроперекиси может быть доведен до 70%. Путем незначительного изменения условий можно значительно увеличить выход перекиси ди-трет-бутила, а также тре/л-бутилового спирта и других продуктов (табл. 19). В ходе реакции наблюдается небольшая потеря бромистого водорода за счет образования бромидов. Условия проведения опыта при катализе бромистым водородом требуют, чтобы реакция проводилась в стеклянном змеевике значительного объема, стенки которого должны быть специально обработаны с целью уменьшить нежелательное разложение продуктов реакции. Выходы, указанные в табл. 19, получены в реакторе объемом 3 л, представлявшем собой стеклянный змеевик внутренним диаметром 25 мм, погруженный в масляный термостат. Дезактивация стенок состояла в промывке реактора 2—5%-ным раствором борной кислоты, сушке и откачке при 145°. [c.148]


Смотреть страницы где упоминается термин Катализ кислотой в целом: [c.75]    [c.67]    [c.20]    [c.304]    [c.57]    [c.327]    [c.791]    [c.90]    [c.92]    [c.17]    [c.9]    [c.193]    [c.92]    [c.459]    [c.459]    [c.89]    [c.250]   
Органическая химия (1964) -- [ c.318 ]

Органическая химия (1964) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Целит

Цель



© 2024 chem21.info Реклама на сайте