Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор удельная активность

    Стратегию принятия решений при поиске оптимальной пористой структуры катализаторов необходимо строить с учетом важнейших качественных закономерностей, определяющих взаимосвязь между активностью катализатора и характером строения его пор. Нанример, при низкой удельной активности рекомендуется попользовать катализаторы с монодисперсной структурой и развитой внутренней поверхностью. Для катализаторов с высокой удельной активностью при низких и средних давлениях следует стремиться к созданию бидисперсной структуры, сочетающей наличие узких и широких пор. Широкие поры призваны обеспечивать перенос реагирующих веществ вглубь зерна и более полное использование внутренней поверхности катализатора с развитой системой узких пор. [c.119]


    Поскольку при эксплуатации средний радиус и удельный объем пор у СФ-катализаторов возрастаю , то правомерно утверждать, что степень использования внутренней поверхности у отработанного катализатора не может быть ниже, чем у свежего. Расчеты показываю , что даже при равных значениях этого показателя у отработанных катализаторов удельная активность несколько ниже, чем у свежих (40-55% масс./м против 65-87% масс./м- соответственно). [c.82]

    Очевидно, что катализатор с используемым в промышленности размером гранул подвержен влиянию этих двух факторов и его размеры зависят от состава газа, температуры, давления, а также от композиции и структуры катализатора. На катализаторе 35-4 были проведены исследования с применением оборудования, описанного в гл. 3. В результате было модифицировано кинетическое уравнение (3) с учетом влияния диффузии и размера гранулы, которое имеется в промышленных конверторах. Скорости реакции, приведенные в таблице, даны для свежего катализатора 35-4 и не пригодны для использования в расчетах по моделированию конвертора для этой цели необходимо знать соответствующие скорости для уже работавшего катализатора. Удельная активность уменьшается во время работы в результате действия ядов и спекания. Степень этого снижения очень сильно зависит от условий работы и чистоты синтез-газа, поэтому при расчете проектной активности необходимо иметь соответствующие сведения. [c.170]

    Как уже говорилось, в ряде работ последних лет показана возможность существенно увеличить удельную активность платины путем введения в алюмоплатиновые катализаторы добавок ряда элементов, модифицирующих платину и ускоряющих медленную стадию десорбции ненасыщенных продуктов с поверхности катализатора. Наиболее распространенными промотирующими добавками являются элементы подгруппы германия, введение которых в состав алюмоплатинового катализатора, не уменьшая количества кокса на катализаторе, предотвращает отложение его на платине [64]. [c.41]

    Удельная активность адсорбционного катализатора. В случае адсорбционного катализатора удельная активность может быть определена двумя способами, в зависимости от дальнейших целей без учета и с учетом кристаллизации части слоя. [c.134]

    Как видно из приведенных данных, никель на этих окислах обладает развитой внутренней поверхностью. Однако автор отмечает значительное влияние носителя на удельную каталитическую активность никеля только в случае никель-хромового катализатора удельная активность никеля не зависит от состава контакта и способа его приготовления [86] и равна удельной активности никеля без носителя. При использовании контактов с окислами алюминия или кремния эта величина оказалась гораздо меньшей. [c.126]


    Определение оптимального химического состава — еще пе окончательное решение задачи создания эффективного промышленного катализатора. Удельная активность, характеризующая активность единицы поверхности катализатора, —величина специфичная для данного химического состава — пе единственный фактор, определяющий производительность катализатора. Большинство катализаторов гетерогенно-каталитических процессов обладают высокоразвитой пористой структурой. Чтобы достичь активной поверхности внутри зерна, реагенты должны продиффундировать в поры катализатора. Поэтому диффузия реагентов и продуктов реакции внутри зерна катализатора является одной из стадий гетерогенно-каталити-ческих реакций. В работах [1, 2] было показано, что скорость гетерогенно-каталитической реакции в общем случае — результат взаимодействия диффузии реагентов внутри зерна катализатора и химической реакции на поверхности катализатора. Величина внутренней поверхности и скорость диффузии реагентов внутри зерна катализатора зависят от строения пористой структуры. Недостаточная скорость диффузии приводит к неполному использованию внутренней поверхности катализатора и, в конце концов, к снижению эффективности катализатора. Очевидно, регулируя пористую структуру, можно создать условия наиболее полного использования внутренней поверхности катализатора и обеспечить максимальную его производительность. [c.153]

    Приведенные данные показывают, что влияние давления прессования на активность прессованных катализаторов для разных катализаторов различно. Хотя в большинстве исследованных случаев повышение давления прессования приводит к росту производительности катализаторов, удельная активность последних изменяется с повышением давления в разных направлениях. Это, повидимому, свидетельствует как о специфике самих катализаторов, так и о специфике механизма катализируемых реакций. [c.113]

    Активность катализаторов определяется активностью единицы поверхности (удельной активностью) и величиной поверхности, доступной для реагирующих веществ в условиях реакции. Величина поверхности и степень ее доступности, зависящая от пористой структуры, обусловливаются способом приготовления катализатора. Удельная активность однокомпонентных катализаторов, не содержащих примесей, приблизительно постоянна и зависит только от химического состава Ч Но в процессе [c.3]

    Процесс сокращения удельной поверхности в начальный период работы идет быстро и по мере старения замедляется, однако он продолжается в течение всего периода работы катализатора. Удельная активность катализатора на протяжении [c.83]

    Носители с малым размером частиц (5—50 мк), пористые (20—65% малые поры) и с высокой удельной поверхностью (от 50 до 1000 мУг). Примерами могут служить активированные угли, сухие гели, бентонит, боксит, скелетный глинозем и окись магния. Этот класс носителей применяется для получения катализаторов наивысшей активности. [c.307]

    На примере реакции гидрогенолиза циклопропана изучена [87] удельная активность различных Р1-катали-заторов. Показано, что удельная активность не зависит от природы носителя (5102, у- и т)-модификации А Оз), содержания в катализаторе и степени диспергирования металла на поверхности носителя. [c.103]

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]

    Данные [54] указывают на возможность изменения удельной активности металла в процессе зауглероживания. Существенное влияние на изменение активности и селективности катализатора оказывает структура коксовых отложений. Образующийся неупорядоченный углеродсодержащий слой на поверхности металла токсичен для реакции дегидрирования и не подавляет реакции гидрогенолиза. Степень упорядоченности кокса определяется типом кристаллической грани металла и температурой реакции. [c.39]


    Удельная активность а катализатора — это количество вещества (в молях), реагирующее в единицу времени на единицу поверхности катализатора, т. е. [c.308]

    Естественно логичнее сравнивать катализаторы по удельной активности. Однако удельные активности различным способом приготовленного никеля различны (в данном случае отличаются примерно в 5 раз), поэтому возникает вопрос о причине этого различия и о том, как оно может сказаться на оценке активности  [c.309]

    Полученные данные позволяют сделать ряд выводов [88, 89]. Величина избыточной информации АЯ(1), отнесенная к одному атому, для адсорбционных катализаторов в 5—6 раз выше, чем для кристаллических (Р1-черни). В отличие от спекания кристаллических образцов, спекание адсорбционных катализаторов не приводит к непрерывной потере информации. Величина Я( ) слоя здесь проходит через минимум в той же температурной точке, что и удельная активность, и далее возрастает с увеличением температуры спекания. [c.107]

    Некоторые исследователи, например Кобозев и его сотрудники [88], придавали большое значение вопросу концентрации активного компонента на носителе. Во многих случаях установлено, что удельная активность катализатора растет по мере понижения концентрации активного компонента на носителе, а в некоторых случаях удалось установить и точки максимума для этой зависимости [89]. При оценке результатов экспериментов по сравнительной активности катализаторов на носителях надо иметь в виду, что, как показали электронно-микроскопические исследования [90], активные компоненты (металлы или окислы) часто образуют на носителе скопления кристаллов или сферолитов. [c.46]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    Рассматривая приведенные выше ряды активностей катализаторов, можно сделать очень важный вывод, что гидрирующая, изомеризующая и расщепляющая активности окисных катализаторов ниже активностей сульфидных катализаторов, а расщепляющая активность металлических катализаторов может быть даже выше, чем активность сульфидных катализаторов. Чтобы оценить роль носителя, целесообразно определить удельную активность различных катализаторов — отношение степени превращения веществ в реакциях гидрирования, изомеризации и расщепления к одинаковому числу атомов Мо или W на поверхности катализатора, условно принимая во всех случаях мономолекулярный слой. Полученные дан-. ные приведены в табл. 70. [c.265]

    Когда появились синтетические катализаторы крекинга, было установлено, что при повышенных температурах они вызывают полимеризацию олефинов [30, 31]. После первой работы Тамеле [32], показавшего линейную зависимость между активностью катализатора крекинга в полимеризации пропилена и числом кислотных центров на его поверхности, многие работы по полимеризации были посвящены исследованию природы самих катализаторов. Джонсон [33] сообщил, что с увеличением силы кислоты возрастает активность на один кислотный центр катализатора (удельная активность), тогда как в более позднем сообщении [34] показано, что менее кислотные центры имеют большую удельную активность однако все, по-ви-димому, согласны с тем, что протонированные центры катализатора активны, а имеющие свойство кислот Льюиса неактивны. [c.194]

    Данные таблицы показывают также, что восстановленные железоцианидные катализаторы обладают исключительно высокой активностью общая активность (по константе скорости), отнесенная к объему катализатора, в случае железоцианидных образцов примерно в 1,5 раза выше активности плавленых катализаторов удельная активность, отнесенная к единице общей поверхности, в 10 раз и более выше, чем для плавленых катализаторов. Так как содержание железа в плавленом катализаторе в 12,4 раза больше, чем в железоцианидных (при загрузке одинаковых объемов), то можно считать, что железо железоцианидных катализаторов примерно в 17 раз активнее плавленых. [c.183]

    Наиболее типичным способом приготовления таких катализаторов является нанесение иа поверхность носителя какого-либо соединения каталитически активного металла, с последующим его восстановлением илн термическим разложением. Этим достигается резкое увеличение удельной активности металла и экономия его, что особенно важно, когда катализаторами являются такие дорогие металлы, как платина, палладий, осмий, иридий и др. Носитель не только способен в небольших пределах изменять активность катализатора ои является одновременно промотором, а иногда влияет и на избирательность нанесенных катализаторов (М, Е, Ададуров) и термическую сто11кость их. [c.351]

    Эффективность работы регенератора оценивается рядом показателей. К ним относятся степень снижения содержания кокса на катализаторе, удельный расход воздуха, абсолютное количество сжигаемого в единицу времени кокса, процентное содержание гаслорода в продуктах сгорания. Кроме того, нередко подсчитывают скорость выжига кокса — число килограммов сожженного кокса в час на один килограмм находящегося в регенераторе катализатора. Так, например, если количество сожженного кокса составляет 4000 кг/час и в регенераторе находится 40 т катализатора, то скорость выжига кокса равна 4000 40000 = = 0,10 кг чае Численные значения этого показателя весьма различны, что объясняется многообразием условий эксплуатации регенераторов и использованием катализаторов разной регенери-руемости и активности. При проектировании регенератора одной из крекинг-установок флюид (построена до 1945 г.) скорость выжига была принята равной 0,03 кг час кг. В результате обследования работы двух Других промышленных установок было найдено, что этот показатель изменялся для одного регенератора от 0,11 до 0,14, а для другого от 0,14 до 0,18 [186, 187]. Эти обследования были предприняты в связи с переводом крекинг-установок на работу с катализаторами, содержащими повышенное количество алюминия. [c.161]

    Исследована [26] активность различным образом приготовленных образцов катализатора Р1/А120з в реакции гидрогенолиза этана. Различная степень дисперсности платины в катализаторах достигалась изменением содержания металла (от 0,1 до 16%) (серия А), варьированием температуры прокаливания катализатора [(6% Р1)/ /А1гОз)] на воздухе перед восстановлением (серия Б), а также изменением температуры восстановления катализаторов [(4,6—16% Р1)/ /А1гОз] водородом в интервале температур 360—700 С (серия В). Полученные кинетические данные свидетельствуют об идентичном механизме реакции на всех катализаторах с размером кристаллитов Р1 в пределах 2,3—14,7 нм. Показано, что гидрогенолиз этана является структурно-чувствительной реакцией. В сериях А и Б с ростом размеров кристаллитов Р1 увеличивалась удельная скорость реакции. В то же время в серии В наибольшую активность проявляли катализаторы с более дисперсным распределением металла. Обнаружено, что удельные активности двух катализаторов, полученных разными способами, но имеющих близкие размеры кристаллитов Р1 (11,7 и [c.92]

    Изучен гидрогенолиз и дегидрирование н-пентана в присутствии Ки/АЬОз (0,034—1,492% Ни) и Ки-черни при 450—490 °С и, атмосферном давлении [36—39]. Кинетический порядок реакции по углеводороду равен 0,4, порядок по водороду равен 0,7. Активность катализатора сильно зависит от топографии его поверхности максимальную удельную активность проявил катализатор, содержащий 0,085% Ки. На основании полученных данных был сделан вывод, что предварительная стадия включает в себя конкурентную адсорбцию углеводорода и водорода на одних и тех же активных центрах, состоящих, как правило, из двух-трех атомов Ки. Адсорбция алкана на таком центре приводит к образованию частично дегидрированных промежуточных частиц состава С5Н10 или С5Н9. Стадией, лимитирующей скорость реакции, является поверхностная реакция между такими ненасыщенными частицами и адсорбированным водородом. [c.95]

    Удельная активность катализатора Р1/А1аОз, модифицированного различными металлами, в реакциях С5- (а) и Се-дегидроциклизации (б) изобутилбензола [166]. [c.251]

    Выделим следующие функциональные группы компонентов катализатора каталитически активные вещества, промоторы, инертные вещества. Последние следует рассматривать как условно инертные , так как в некоторых случаях компоненты катализатора, считающиеся инертными, в действительности так или иначе влияют на активность катализатора. Классификация компонентов катализатора представлена на рис. 1. Согласно этой классификации, каждая из перечисленных функциональных групп делится на две или три подгруппы. Группа каталитически активных веществ содержит подгруппы смешанных и нанесенных активных компонентов, т. е. находящихся в составе смешанных и нанесенных катализаторов. Группы промоторов разделены на две большие подгруппы модификаторы — вещества, так или иначе (чаще положительно) влияющие на удельную каталитическую активность и селективность катализатора, и диспергаторы — вещества, оказывающие положительное влияние на удельную поверхность активного компонента. Условно инертные вещества подразделяются на следующие подгруппы наполнители, связующие, порообразую-щие. Функции этих веществ ясны из их наименования. [c.8]

    Во многих случаях удельная активность, в зависимости от температуры предварительного прокаливания катализатора, имеет максимум. На рис. XIII, 4 показан пример подобной зависимости для серебряных катализаторов разложения муравьиной кислоты. В то время как общая поверхность катализатора в результате термического роста кристаллов закономерно уменьшается с увеличением температуры двухчасового предварительного прогрева, удельная активность имеет отчетливый максимум примерно при 600° С. [c.338]

    Каковы бы ни были конкретные взгляды, на механизм катализа, обычно признается существование активных центров на поверхности катализатора. Однако имеется и другая точка зрения. Например, Г. К. Боресков считает, что активных центров не существует и каталитическая активность является свойством, присущим всей поверхности твердого тела. Отсюда следует, что активность прямо пропорциональна общей поверхности катализатора и зависит только от его химического состава. Поэтому катализаторы одинакового химического состава должны иметь постоянную удельную активность. Для некоторых металличв" ских катализаторов такая точка зрения подтверждается опытч [c.338]

    Рис, XIII, 4. Зависимость удельной активности и удельной поверхности серебряного катализатора от температуры предварительного прокаливания. [c.338]

    Условия синерезиса магнийсиликатного гидрогеля определяют пористую структуру катализатора, его активность и физико-химические свойства. Стадия синерезиса приводит к увеличению удельного объема пор и уменьшению насыпной плотности, а также к повышению активности алюмомагнийсиликатного катализатора. Скорость и глубина синерезиса зависят от содержания сухого вещества в свежесформованном гидрогеле, от температуры и pH среды, в которой протекает процесс, и от продолжительности процесса. Повышенпе температуры вызывает увеличение радиуса [c.94]

    Характерно, что после обработки паром активность алюмомагнийсиликатных катализаторов значительно возрастает, причем наибольшее возрастание наблюдается у катализаторов, прошедших стадию синерезиса при 25—30° С, а наименьшее — у катализаторов, прошедших синерезис при 65° С. При обработке паром химическая природа алюмомагнийсиликатных соединений не изменяется. Увеличение же удельной активности после такой обработки объясняется повышением числа активных центров на единице поверхности катализатора (в результате сокращения поверхности за счет сжатия неактивных участков). При этом общая поверхность катализатора сокращается в большей степени, чем увеличивается удельная активность. [c.95]

    Обычно в гетерогенном катализе каталитическую активность характеризуют относительным увеличением скорости реакции в расчете на единицу поверхности катализатора. Спецификой окисления является его автоускоренный характер. Поэтому кинетику автоокисления удобнее характеризовать не скоростью, которая меняется во времени, а ускорением, т. е. коэффициентом Ь в уравнении А[02] 2 = Ь . При гетерогенном катализе или ингибировании окисления количественной характеристикой удельной активности материалов служат отношения Ъ—bo)lboS — для материалов, обладающих каталитическим действием, и (Ьо—b) boS — для материалов, обладающих ингибирующим действием, где Ьо — коэффициент для топлива без металлов S — поверхность металла, см /л топлива. Значения (6—ba)fboS и (Ьо—b)/boS для различных материалов в топливе Т-6 при 125 °С представлены в табл. 6.3. [c.207]

    Я(1) = —SPi logaPi, где Pi — вероятность выборки атома решетки в разных позициях (вершина, ребро, грань). Свойства катализаторов могут характеризоваться параметром / = alAHi d, где а — удельная активность, выраженная числом молекул, реагирующих за секунду на одном поверхностном атоме АЯ — дополните льная информация сверх предельной информации Нц), равная АНц) = эта [c.106]

    Удельная активность, отнесенная к одному атому платины, изменяется с увеличением температуры сдекания в противоположность тому, что наблюдается в случае кристаллической Р1-черни. Это показывает, что адсорбционные катализаторы с малой концент рацией нанесенного веш,ества, даже подвергнутые тренировке (прогреванию и откачиванию до 10" мм рт. ст.), не представляют собственно кристаллических систем. С увеличением степени покрытия поверхности носителя до 0,038 образцы адсорбционных катализаторов по избыточной информации, параметру / и удельной активности приближаются к образцам Р1-черни. [c.107]


Смотреть страницы где упоминается термин Катализатор удельная активность: [c.126]    [c.396]    [c.168]    [c.385]    [c.170]    [c.97]    [c.163]    [c.341]    [c.357]    [c.357]    [c.399]    [c.92]    [c.13]    [c.52]    [c.165]   
Курс физической химии Том 2 Издание 2 (1973) -- [ c.290 , c.333 ]




ПОИСК





Смотрите так же термины и статьи:

Активность удельная

Катализатора активность

Катализаторы активные

Катализаторы удельная



© 2024 chem21.info Реклама на сайте