Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота мольная

    Идеальным называется раствор, общее давление паров которого является линейной функцией его мольного состава в жидкой фазе и при смешении компонентов которого не происходит сжатия или расширения объема, не выделяется и не поглощается теплота. Другое определение идеального раствора будет дано на основе уравнения (1.40). [c.11]

    Так как химический потенциал компонента в различных фазах равновесной системы имеет одну и ту же величину, то в уравнениях (V, 30), (V, 30а) и (V, 31) летучести относятся к компонентам в любой фазе системы, а числа молей и мольные доли—к какой-либо одной из фаз. Если имеется равновесие бинарного жидкого (или твердого) раствора с его насыщенным паром, а последний—идеальный раствор идеальных газов, то в уравнении (V, 31а) можно мольные доли х и отнести к газовой фазе или к жидко-му раствору. В первом случае уравнение (V, 31а) приводится к особой форме уравнения Дальтона (в чем легко убедиться) и может быть использовано как таковое. Во втором случае, определив изменения парциальных давлений компонентов жидкого раствора с изменением его состава, можно найти изменение химических потенциалов компонентов жидкого раствора с его составом. Знание зависимости 1пД-(1пр,.) или l от состава раствора дает возможность вычислять многие термодинамические свойства раствора при данной температуре, а изучение тех же величин при различных температурах приводит к расчету теплот образования раствора. [c.182]


    По определению теплота образования вещества есть теплота реакции, единственным продуктом которой является это вещество, а реагентами — составляющие его элементы. В этом случае естественно приписать продукту стехиометрический коэффициент, равный единице. Согласно принятому ранее соглашению, по которому (ДЯ )у приравнивается к мольной энтальпии вещества А, при стандартных условиях, для идеальных смесей имеем  [c.43]

    Поскольку всегда измеряются только изменения энтальпии, величина энтальпии какого-либо химического соединения зависит от произвольного выбора начала отсчета. Хотя такое соглашение и не является общепринятым, удобно приравнять мольную энтальпию соединения при стандартных условиях к теплоте его образования из элементов при стандартных условиях. Остается еще произвольность в выборе агрегатного состояния элементов, но это обстоятельства не имеет значения, если принято условие, что агрегатное состояние данного элемента берется одним и тем же при расчете теплот образования всех включающих его соединений. [c.41]

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]

    Зависимости для расчета теплоты (мольной) испарения и давления насыщенного пара по уравнению Клаузиуса—Клапейрона  [c.187]

    Плавление. Теплота плавления—перехода твердой фазы в жидкую—всегда положительна. Объем (мольный, удельный) жидкой фазы (У> =У2) в общем случае может быть больше или меньше. объема того же количества твердой фазы ( = 1)- Отсюда в соответствии с уравнением (IV, 56) вытекает, что величина йр/йТ или обратная ей величина йТ/с1р, характеризующая изменение температуры с увеличением давления, может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или снижаться с увеличением давления. [c.140]

    Испарение. Теплота испарения—перехода жидкой фазы в .газообразную, так же как и теплота плавления, положительна. В этом случае всегда объем (удельный, мольный) газа больше соответствующего объема жидкости, т. е. в уравнении (IV, 56) всегда ,, ,> 1. Поэтому (1р1(1Т, а значит, и йТ (1р также всегда положительны. Следовательно, температура испарения всегда повышается с ростом давления. [c.140]


    Q я Т — теплота (мольная или соответственно удельная) и температура при данном фазовом превращении. [c.60]

    Мольная теплота Мольная Критическая  [c.39]

    Взаимное превращение фаз рассматривалось здесь как равновесное и изотермическое, поэтому 8,-8, =. = (IV, 55) Здесь /.—теплота фазового превращения, поглощаемая при переходе моля вещества из фазы 1 в фазу 2 —V]—разность мольных объемов двух фаз. Из уравнений (IV, 54) и (IV, 55) получим  [c.139]

    В технических расчетах используются в основном значения средней мольной (С) или удельной (с) теплоемкости. Когда п моль вещества обмениваются с окружающей средой Q кал теплоты и при этом температура вещества изменяется от Тх до Тч, то средняя мольная теплоемкость  [c.129]

    Пример VI-4. Этилен в количестве 1 кмоль находится под давлением 50 ат и при температуре 40 °С (Г, = 313 К). Чему равно количество теплоты, необходимое для нагревания этого газа до температуры 80 °С (T a = 353 К) при данном постоянном давлении Мольная масса этилена Л1 = 28 кг/кмоль. [c.141]

    Среднюю мольную теплоемкость газов Ср можно рассчитать, пользуясь уравнением ( 1-14) (предназначенным для нахождения действительной мольной теплоемкости), но при значениях а, Ь, с и (1, данных в табл. 1-4 [8]. Мольная теплоемкость представляется как средняя для температур О и t° . При необходимости опреде-иить в пределах температур /2 и t нужно в соответствии с уравнением ( 1-13) вычислить количество теплоты Qp, при температурах от 0°С до /2 и Qp, при температурах от 0°С до и найти [c.143]

    Отнесем мольную теплоту реакции (в кдж/кмоль) прореагировавшего вещества А, а также энтальпии всех реагентов к некоторой основной температуре 7 . Тогда, очевидно, общая теплота реакции x AH )Ti, равна изменению энтальпии всей системы, определяемой изменениями теплоемкостей и теплотами фазовых превращений компонентов. Другими словами, можно сказать, что изменение химической энтальпии численно равно изменению физической энтальпии.  [c.91]

    Клапейрона—Клаузиуса) его теплоту испарения и изменение внутренней энергии при испарении, а затем, используя мольный объем жидкого иода, найти величину 0 . [c.251]

    Реакции дегидрирования и дегидроциклизации нафтеновых и парафиновых углеводородов идут с поглощением теплоты, реакции гидрокрекинга и гидрогенолиза — с выделением теплоты, реакции изомеризации парафиновых и нафтеновых углеводородов имеют слабо-выраженный тепловой эффект. В табл. 1 приведены усредненные мольные тепловые эффекты различных реакций риформинга (АН). [c.6]

    Опытное определение удельной (с) или мольной (С) теплоемкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества на —ix= [c.47]

    Мольную долю нафталина обозначим х, тогда мольная доля бензола будет (1—х). Зависимость теплот плавления от температуры выражается уравнениями  [c.236]

    Упрощая вопрос и заменяя совокупность сил межмолекулярного взаимодействия (молекулярное силовое поле) ее макроскопическим аналогом—внутренним давлением, можно положить, что при отсутствии химического взаимодействия свойства раствора определяются в основном различием во внутренних давлениях компонентов. Можно допустить, что при равенстве внутренних давлений двух смешивающихся жидкостей молекулярные силовые поля не изменяются существенно при смешении и молекулы обоих компонентов испытывают такое же воздействие окружающих молекул, что и в среде себе подобных. В этом случае можно ожидать простых законов для многих свойств растворов, в частности отсутствия теплоты смешения и наличия пропорциональности между давлением насыщенного пара компонента и его мольной долей в растворе. Последнее связано с тем, что возможность для отдельной молекулы растворителя перейти из жидкой фазы в пар остается в растворе (в рассматриваемом простейшем случае) той же, что и в чистой жидкости число же молекул, испаряющихся в единицу времени, уменьшается пропорционально мольной доле. [c.168]

    Энергия (теплота) сольватации. Энергия сольватации ионов может быть вычислена путем сопоставления мольных величин энергии ионной решетки и и теплоты растворения соли Qp. Разность эти.х величин равна теплоте растворения свободных (газообразных) ионов 1 моль вещества (теплота сольватации Ос) [c.419]

    Выражаемая этим уравнением симметричная параболическая зависимость теплоты образования моля раствора от мольной доли х (рис. VII, 7) характерна для регулярных растворов. [c.251]

    Как показывает молекулярно-статистический анализ, закон Рауля может соблюдаться при любых концентра- сг> циях и при условии равенства нулю теплоты смешения жидких компонентов только в тех случаях, когда мольные объемы компонентов близки между собой. Увеличение различия между мольными объемами приводит к отрицательным отклонениям от закона Рауля, т, е, к положительным избыточным энтропиям смешения [см. уравнения (VH, 55) и (УП, 56)], [c.253]


    О—мольная теплота адсорбции. [c.332]

    Если схема процесса определена и в качестве реагирующих веществ применяют обобщенные углеводороды, то удается использовать отмеченную выше (см. стр. 104) независимость, мольной теплоты простого процесса от молекулярной массы сырья. Теплоту сложного процесса можно найти как сумму теплот стадий. Обычно с этой целью удобно рассмотреть совместно уравнения материального и теплового балансов. [c.107]

    Последнее уравнение преобразуем, отнеся его к 1 кг сырья, подставив численные усредненные величины мольных теплот, а также выразив Дл,- через экспериментально определяемые массовые доли углеводородов в сырье г/ог. катализате yi, через массовый выход стабильного катализата "к и средние молекулярные массы Ма, Мн и Мп углеводородов каждой группы. [c.115]

    Уже отмечалось, что мольная теплота реакции слабо за- [c.119]

    По графику на рис. П-1 можно определить величины констант кинетического уравнения. На рис. П-3 показана зависимость теплоты реакции от температуры. Зависимости мольных теплоемкостей всех участвующих в реакции веществ от температуры приведены на рис. П-4. [c.143]

    ДЯ—теплота реакцпп. hj — иарцпальная мольная энтальпия вещества Aj. [c.250]

    Идеальным называется раствор, общая упругость паров которого является линейной функцией его мольного состава в жидкой фазе, т. е. может быть рассчитана по уравнению вида 3, и при смещении компонентов которого не имее места ни изменение объема, ни тепловой эффект (т. е. выделение теплоты растворения). [c.11]

    Гидролиз диорганодихлорсиланов — очень быстрая реакция. Даже при —45 "С в водном ацетоне константы скорости гидролиза диметилдихлорсилана (ДДС) равны 95 мин" для первого и 25 МИН" для второго атома хлора [26]. При массовом отношении ДДС вода = 1 0,14 (эквимольном) реакция идет с полным выделением газообразного НС1 и поглощением 30,9 кДж теплоты на 1 моль ДДС (240 кДж на 1 кг ДДС). При массовом отношении 1 1 (мольном 1 7), благодаря полному растворению НС1 с образованием 40%-ной соляной кислоты, суммарный тепловой эффект положителен (116 кДж/моль или 896 кДж/кг). Гидролиз с частичным выделением газообразного НС1 при массовом отношении 1 0,32 (мольном 1 2,3) идет без тепловых эффектов. Процессы с выделением газообразного НС1 сложнее в аппаратураом оформлении, чем процессы с его полным поглощением, и приводят к образованию более вязких к более кислых гидролизатов. ---- [c.469]

    Ср, ж=18 ккал/моль-град—теплоемкость жидкой воды Ср, 9 ккал/моль-град—теплоемкость льда Х,,л.= 1438 к ал/лолб—мольная теплота плавления льда при О °С. [c.94]

    При превращении одной фазы в другую удельные (интенсивные) свойства вещества (удельный или мольный объем, внутренняя энергия и энтропия одного грамма или одного моля) изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией ее состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при О °С и 1 атм, при поотоянном давлении и подведении теплоты превращается в двухфазную систему лед—жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются экстенсивные свойства системы в целом (внутренняя энергия, энтальпия, энтропия и др.). [c.139]

    Теплоты испарения различных жидкостей закономерно связаны с их нормальными температурами кипения. По правилу Траутона (1884) мольные энтропии испарения различных жидкостей в нормальных точках кипения одинаковы  [c.142]

    Наклон кривых Оо, Оа и ОК на плоской диаграмме состояния определяется знаком и величиной производной йр1ё.Т, выражаемой уравнением (IV, 56) р1с1Т= 1Т у — 1). Знак этой производной определяется знаками теплоты процесса перехода X и разности мольных объемов фаз При плавлении, кипении и возгонке теплота системой поглощается, т. е. Х>0. Мольный объем газообразной фазы всегда больше мольных объемов равновесных твердой или жидкой фазы в этих случаях р/ Т>0, т. е. кривая Оо возгонки и кривая ОК кипения всегда наклонены вправо. Обычно процессы плавления также сопровождаются увеличением мольного объема и кривая Оа плавления почти у всех веществ наклонена также вправо. Таким образом, диаграмма, представленная на рис. XII, I, является типичной для самых различных веществ. [c.361]

    Найти массу метана, при noflHOVf сгорании которой (с образованием жидкой поды) выделяется теплота, достаточная для нагревания 100 г воды от 20 до 30 °С. Мольную теплоемкость воды принять равной 75,3 Дж/(моль-К). [c.85]

    Мольной теплотой образования химического соединения ДЯ/, кал1моль, называется теплота реакции образования одного моля этого соединения из простых веществ при стандартных условиях. Агрегатное состояние исходных веществ реакции должно быть постоянным. [c.28]

    Во время измерения степени превращения массовая скорость потока G составляла от 57 до 164 кг1(м -ч). Температура на входе в реактор менялась от 120 до 170° С, а мольное отношение уксусного альдегида к водороду колебалось в пределах от Чаз До Viso- Процесс был слегка эндотермичным, мольная теплота [c.177]


Смотреть страницы где упоминается термин Теплота мольная: [c.57]    [c.161]    [c.243]    [c.58]    [c.173]    [c.320]    [c.50]    [c.34]    [c.150]    [c.107]    [c.147]    [c.150]   
Основы физико-химического анализа (1976) -- [ c.30 ]

Свойства газов и жидкостей (1966) -- [ c.163 , c.189 , c.293 , c.415 ]

Краткий курс физической химии Изд5 (1978) -- [ c.171 , c.247 , c.248 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.21 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.155 , c.234 ]




ПОИСК







© 2025 chem21.info Реклама на сайте