Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активация влияние температуры

    V Влияние температуры. Зависимость скорости реакции от температуры, энергии активации и энтропии активации определяется следующим выражением для константы скорости реакции  [c.198]

    Зависимость скорости реакции от температуры. Энергия активации. Для многих реакций, а особенно для реакций простых, фактор, учитывающий влияние температуры в кинетическом уравнении (УП1-8), или так называемая константа скорости реакции, может быть представлена с помощью уравнения Аррениуса  [c.214]


    Эти опытные данные свидетельствуют о справедливости правила Вант-Гоффа при повышении температуры на каждые 10 С скорость реакции увеличивается примерно в 2—4 раза. Из уравнения для к также следует, что чем больше энергия активации, тем значительнее влияние температуры на скорость реакции. [c.198]

    Электрохимическая кинетика основывается как на общих положениях химической кинетики, так и на частных закономерностях, характерных только для электрохимических процессов. Так, следует отметить справедливость для электрохимии основного постулата химической кинетики, применимость понятия энергии активации для многих электрохимических процессов, положительное влияние температуры на скорость электролиза и т. п. [c.606]

    Влияние температуры на скорость реакций. Энергия активации 475 [c.475]

    Из уравнения 8.1 следует к значительному возрастанию скорости реакции приводит даже небольшое снижение энергии активации влияние температуры на скорость, как правило, тем сильнее, чем больше реакции реакции с высокими Е при низких температурах протекают с малыми скоростями, однако влияние температуры на скорость таких реакций обычно более значительное (у больше). [c.108]

    В теории активации влияние температуры и катализатора на скорость химической реакции описывается следующим уравнением для константы скорости химической реакции  [c.50]

    Какую роль играет энергия активации в теории столкновений Какие факторы, согласно этой теории, влияют на скорость реакции Каковы две причины влияния температуры на скорость реакции в теории столкновений  [c.394]

    Галогенирование проводилось в широком интервале температур, и в то время как избирательность действия при хлорировании уменьшается с повышением температуры, при фторировании этого не наблюдалось. Подобная нечувствительность реакций фторирования, видимо, обусловлена тем, что вследствие чрезвычайно малой энергии активации влияние температуры не может быть выявлено. С другой стороны, получены весьма строгие доказательства того, что фторирование протекает в газовой фазе (в пузырьках) при гораздо более высокой температуре, чем температура окружающей жидкости. Поэтому нельзя делать определенных выводов о кажущейся нечувствительности реакции фторирования к изменениям температуры . [c.387]

    Это выражение называется уравнением Аррениуса, в котором Е—энергия активации и а—предэкспоненциальный множитель. Данное уравнение настолько точно отражает влияние температуры на скорость простой реакции, что если наблюдаются какие-либо отклонения от указанного закона, то это обычно принимают за доказательство сложности реакции. [c.32]


    В нешироких интервалах умеренных температур, в которых обычно производятся кинетические измерения, энергия актива-Ш1И, по-видимому, не зависит от температуры. Это можно объяснить тем, что энергия активации представляет собой теплоту образования промежуточного соединения, а разница в физических теплотах продуктов реакции и исходных веществ с изменением температуры изменяется незначительно. Однако в ряде случаев такое влияние температуры было обнаружено. Так, например, тщательное повторное изучение экспериментальных результатов, на анализе которых Аррениус основывал свою теорию, и данные более поздних исследований позволили установить некоторую зависимость от Г  [c.35]

    Физическая адсорбция протекает достаточно легко, поэтому равновесное состояние устанавливается быстро даже при низких температурах. Хемосорбция связана с энергией активации (табл. 53), и скорость процесса незначительна, но возрастает с повышением температуры равновесное состояние также устанавливается медленно. Влияние температуры на количество адсорбированного вещества показано на рис. УП-1 для типичного случая адсорбции водорода на смешанном катализаторе . [c.205]

    Энергию активации вычисляют по результатам измерения влияния температуры на константу скорости реакции. Если экспериментальные данные представить в координатах lnfe = /(l/T), тангенс угла наклона полученной прямой линии окажется равным—Такой график показан на рис. 1-2 для мономолекулярной реакции разложения пировиноградной кислоты в водном растворе скорость этой реакции описывается уравнением [c.33]

    Томимо катионного состава образца соотношение интенсивности полос при aVa) и 3550 см—1 зависит от температуры его активации. Прн температуре 380 °С интенсивности обеих полос поглош ения становятся равными н катализатор проявляет максимальные активность и селективность. Равенство интенсивностей полос поглощения свидетельствует, по-видимому, о примерном равенстве концентраций бренстедовских и льюисовских кислотных центров на поверхности катализатора, что вполне согласуется с представлением об их взаимном влиянии и образовании су-перкислотных центров катализатора. [c.351]

    При исследовании влияния температуры на скорость окисления металлов может быть использован метод определения энергии активации процесса за один прием в условиях линейного повыте- [c.437]

    Исследуем влияние температуры на идеальный фактор разделения. Температурная зависимость проницаемости чистых компонентов, как это следует из уравнения (3.76), зависит от энтальпии растворения и энергии активации диффузии Однако избирательность сорбционного процесса а //, как показано в разд. 2.2, при изменении температуры оказывается более консервативной характеристикой, чем проницаемость А(Т). [c.107]

    Зависимость константы скорости от температуры тем сильнее, чем больше энергия активации реакции и меньше температура. Представление о влиянии энергии активации и температуры на чувствительность константы скорости к изменению температуры дают данные табл. 0.4. [c.24]

    Квантовые выходы, естественно, определяются соотнощениями (3.21). Интересно, что и при радикальном механизме при фотохимическом равновесии (Шд=Шт=0) по концентрациям продуктов можно определить константы- скоростей элементарных реакций, используя соотношения (3.22), где 71=йкц/йкт и у2= рц/ рт- Особенностью радикального механизма является ощутимое влияние температуры на скорость химических превращений, так как энергии активации для всех элементарных реакций в этом случае значительны. [c.77]

    Влияние температуры на электрохимические процессы успешно используется С. В. Горбачевым и его школой как кинетический метод исследования природы поляризации этих процессов. Зная эффективную энергию активации процесса, можно судить о природе стадии, определяющей скорость электрохимического процесса. [c.355]

    Влияние температуры. Зависимость скорости каталитической реакции от температуры выражают эмпирическим уравнением типа уравнения Аррениуса и находят кажущуюся энергию активации реакции. Катализатор, для которого она мини- [c.55]

    Поэтому если д А8 )/дТ S О, то д АН+)/дТ 3 О, г. е. имеет место симбатное изменение энтропии и энтальпии активации с температурой. В этом суть компенсирующего влияния температурных изменений этих величин на константу скорости, последнее находит многочисленное экспериментальное подтверждение. Однако такая компенсация не является полной, вследствие чего возникает задача определения явной зависимости А - и -факторов от температуры. [c.24]

    Энергии активации внутримолекулярной изомеризации и распада могут находиться в различном соотношении, но чаще всего бывает, что > Е . В результате этого повышение температуры изменит соотношение в пользу изомеризации или никак не повлияет на него (возможен даже случай диаметрально противоположного влияния температуры). [c.203]


    Теория Райса предусматривает также влияние температуры и давления на реакцию крекинга парафиновых углеводородов. Как уже было отмечено, величины энергии активации реакций свободных радикалов со вторичными и третичными водородными атомами соответственно на 1200 и на 4000 кал меньше, чем энергия активации соот- [c.24]

    Влияние температуры на скорость реакции иллюстрируется данными табл. 6, где приводятся температурные коэффициенты скорости реакции и значения кажупщйся энергии активации для процесса выжига кокса с поверхности шарикового алюмосиликатного катализатора крекинга. [c.268]

    Влияние температуры. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр угправления процессом позво — [c.42]

    Влияние температуры на скорость пиролиза различных алкилбеизо-лов было изучено Рейсом . В табл. 6 приведены данные о константах скорости реакции. Определить энергию активации при соответствующих температурах. [c.50]

    Теперь рассмотрим влияние температуры. Из. экоперимен-тальных данных следует, что лри построении зависимости логарифма константы скорости от обратной величины абсолютной температуры получается почти прямая линия, по крайней мере, для простых реакций и в диапазонах температур, в котором механизм реакций не меняется. Энергия активации Е определяется уравнением [c.33]

    Влияние температуры на скорость реакций. Энергия активации. При повышении температуры скорость химических реакций увеличивается это увеличение весьма значительно. Так, скорость реакции 2Н2 + 0г=2Н20 при 300° С неизмеримо мала, а при 700° С реакция протекает уже мгновенно, в форме взрыва. [c.475]

    Необычным является и влияние температуры на скорость гидроформилирования (рис. 157). При прочих постоянных условиях и достаточно низких температурах эта зависимость описывается уравнением Аррениуса, из которого вычислена энергия активации, измен пощаяся для разных олефинов от 63 до 83 кДж/моль (15— 20 ккгл/моль). При дальнейшем повышении температуры скорость растет, хотя и медленно, а затем снижается с переходом через максимум. Максимум достигается при тем более низкой температуре, чем м ньше давление. [c.533]

    Так как связь С—С в образующемся этане на 71 кДж/моль (17 ккал/моль) слабее связи СНз—Н, распад метана идет с само-ускорением в результате увеличения скорости инициирования цепей при накоплении этана. Рассмотрим влияние температуры и давления на результаты термического разложения парафиновых угле водородов. Радикалы, образующиеся в ходе цепного распада парафинов, можно разбить на две группы. К первой группе относятся радикалы, которые могут распадаться только с отщеплением ато- ма водорода СН3СН2, СН3СНСН3, (СНз)зС. Энергия активации их распада 167 кДж/моль (40 ккал/моль) и константа скорости распада имеет порядок ю> е-20 с". Реакции отрыва этими радикалами атома водорода от молекулы исходного парафина имеют константы скорости ю е ( 535 юо5)/г см -моль" -с". Соотношение скоростей реакций распада и стабилизации этих радикалов при реакции замещения составляет  [c.66]

    Влияние температуры на первичную реакцию термического раопада углеводородов рассмотрено выше. Так как образующиеся в ходе процессов радикалы способны вступать как в реакцию распада (это, конечно, не касается таких радикалов, как СНз, СеНб), протекающую с высокой энергией активации, так и в реакции присоединения, замещеиия, проходящие с низкой энергией активации, повышение температуры, в большей степени ускоряя реакции с более высокими значениями энергии активации, увеличивает их роль. Наиболее существенно влияет температура на судьбу радикалов грег- С4Нэ, 30- СзН и СгНз. С повышением температуры выход изобутилена, пропилена и этилена увеличивается, снижая выходы соответственно изобутана, пропана и этана. При высокой температуре существенно ее влияние также на соотношение скоростей реакций радикала СаНз повышение температуры увеличивает выход ацетилена, снижая выход этилена. [c.95]

    Для оценки влияния температуры процесса интересно-сопоставить значения энергий активаций двух конкурирующих реакций — ароматизации и гидрокрекинга -гептана, поскольку относительные их скорости предопределяют селективность ароматизации углеводорода. При риформинге на монометаллическом алюмоплатиновом катализаторе энергии актирации реакций ароматизации и гид рокре- [c.29]

    Кинетические кривые на рис. 5.5 позволяют приближенно оценить влияние температуры в-интервале 460—500f на скорости превращения метилциклопентана и суммы гептанов. Аналогичные зависимости для реакций образования бензола и толуола, а также реакций изомеризации н-гексана могут быть получены по данным табл. 5.4. Относительные скорости реакций при разных температурах определяли исходя из того, что они равны относительным скоростям пропускания сырья, при которых достигается заданная степень превращения или равный выход ароматичесфго углеводорода. Далее вычисляли температурный коэффициент екорости реакции на 10 °С (Л ю) и приближенное значение кажущейся энергии активации (табл. 5.5). [c.152]

    Зависимость константы скорости, определенной по уравнению Темкина, от температуры выражается уравнением Аррениуса. Энергия активации для промышленного катализатора равна приблизительно 165 Дж/моль. На рис. 27 приведены данные, характеризующие выход аммиака в зависимости от температуры и объемной скорости при давлении 30 МПа и стехиометрическом составе азотоводородной смеси. Эти данные получены на железном промышленном катализаторе. Для приближенных технологических расчетов пользуются усредненной кривой зависимости содержания аммиака от объемной скорости. Прн этом допускается, что при заданных давлении, катализаторе и составе газа можно не учитывать влияния температуры ввиду небольших ее изменений. Таким образом, выход продукта является функцией времени пребывания газа в катализаторной зоне. [c.90]


Смотреть страницы где упоминается термин Активация влияние температуры: [c.231]    [c.222]    [c.114]    [c.220]    [c.117]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.273 ]




ПОИСК







© 2025 chem21.info Реклама на сайте