Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Акцепторы протонов электронов

    Мортон относит реакцию замещения водорода металлом к реакциям электрофильного замещения, основываясь на убеждении (иризнанном в настоящее время неправильным), что атакующим реагентом является катион щелочного металла, а карбанион играет только второстепенную роль акцептора протонов [229]. С другой стороны, основываясь на расположении нары электронов углерод-водородной связи, которая разрывается, и связи углерод — металл (ионной), которая образуется [159], реакция замещения водорода металлом мон<ет быть определена как электрофильное замещение. По той же причине гидролиз тирет-бутилхлорида определяют как реакцию нуклеофильного замещения [159]. [c.473]


    Прежде всего она показывает, что группа состоит из двух непосредственно связанных между собой атомных группировок, имеющих диаметрально противоположные склонности к взаимодействию с электро-ном, - сильного электроноакцептора (С СО-) и сильного электронодонора (С НК-). Такое строение пептидной группы позволяет предположить большие возможности в изменении ее свойств под действием внутримолекулярных и межмолекулярных факторов, влияющих на донорно-акцептор-ные способности фрагментов. Наиболее чувствительной в этом случае оказывается центральная пептидная связь. Предположение подтверждается качественным рассмотрением электронного строения группы. Она обладает п-электронной системой и подвижными неподеленными парами электронов атомов N и О, а также может образовывать водородные связи, выступая при этом как донор и как акцептор протонов. Атомы пептидной группы имеют существенно разную электроотрицательность и заметно отличаются по величине и знаку парциальных зарядов. Если оставаться в границах понятий и представлений, сложившихся в органической химии, то можно сказать, что строение и свойства этой небольшой совокупности атомов обусловлены действием практически всех известных электронных эффектов делокализацией л-электронов, индуктивным влиянием, смещением неподеленных пар электронов и изменением гибридизации атомов, гиперконъюгационным эффектом, полярным влиянием, образованием водородных связей, диполь-дипольными и донорно-акцеп-торными взаимодействиями. В отличие от других классов органических соединений, свойства которых, как правило, находят удовлетворительное объяснение в доминирующем влиянии одного-двух из отмеченных эффектов, в пептидах и амидах все они играют важную роль и находятся в неразрывной взаимосвязи. Само их разделение по отношению к пептидной группе выглядит условным. Она как никакая другая группа представляет собой целостную систему и требует независимого рассмотрения. [c.130]

    Теория основана на особенностях иона водорода. Протон лишен электронной оболочки, он на пять порядков меньше других ионов и очень подвижен. Вещества, способные отдавать протон, называют кислотами, а вещества, принимающие протон, — основаниями. Есть вещества, способные быть и донором, и акцептором протона, их называют амфолитами. Кислотами, основаниями и амфолитами могут быть незаряженные и заряженные соединения. Например  [c.119]

    Так как электроотрицательность серы (2,5) меньше, чем кислорода (3,5), то на атоме серы в 50з имеется большой дефицит электронной плотности. По этой причине 50з можно рассматривать как электрофильный реагент. Он способен сульфировать ароматические соединения даже в апротонных растворителях в отсутствие серной кислоты. На этом основании можно утверждать, что ЗОз является не только сульфирующим агентом, но и акцептором протона на заключительной стадии реакции  [c.366]


    Важную группу АПЭ-растворителей составляют протонные растворители. Общим признаком этих растворителей является наличие у них кислого атома водорода, который обеспечивает возможность образования водородных мостиков с основными электроотрицательными центрами. За счет такого механизма образования связи протонные растворители обладают свойствами акцепторов пары электронов. [c.444]

    Для того чтобы вещество могло быть акцептором протонов (т.е. проявляло себя как основание, согласно представлениям Бренстеда-Лаури), оно должно обладать неподеленной па]30й электронов, которая бы связывала протон. Например, мьс уже знаем, что ЫН, ведет себя как акцептор протона. Пользуясь валентными (льюисовы-ми) структурами, реакцию между Н" и ЫНз можно написать следующим образом  [c.99]

    Реагент V, содержащий атом с неподеленными электронными парами, незаряженный или несущий отрицательный заряд, может не только участвовать в реакции нуклеос()ильного замещения, но и быть акцептором протона. Когда в субстрате у р-углеродного атома имеется атом водорода, наряду с нуклеофильным замещением может протекать элиминирование. [c.97]

    Полуреакции ( 1.6.2) и ( 1.6.3) аналогичны окислительным и восстановительным полуреакциям для полной окислительновосстановительной реакции. Действительно, перенос электронов от восстановителя в полной окислительно-восстановительной реакции возможен только при наличии акцептора электронов — окислителя. Аналогично перенос протонов, т. е. диссоциация кислоты АН по реакции ( 1.6.1), возмол ен только при наличии акцептора протонов — основания. [c.181]

    В инертных, неполярных растворителях вероятность отрыва протона очень мала, хотя в силу внутренних электронных эффектов связь Н—А может быть в высокой степени поляризована. В таких условиях кислотные свойства проявляются в самоассоциации молекул НА или в ассоциации с акцепторами протонов — основаниями, В последнем случае мерой кислотности является константа ассоциации с каким-либо основанием, выбранным в качестве стандарта. Например, константа ассоциации бензойной кислоты и дифенилгуанидина в бензоле составляет 1,82 10 . [c.234]

    Механизм образования водородной связи в значительной степени сводится к донорно-акцепторному взаимодействию (донор электронной пары-атом электроотрицательного элемента, акцептор - протон). Перекрывающиеся орбитали атомов во фрагменте З Н -Э образуют трехцентровые молекулярные орбитали, подобные рассмотренным ранее (см. разд. 2.5). [c.140]

    Согласно этой теории, кислота является донором протона, а основание — акцептором протона. Для взаимодействия с протоном основание должно иметь пару электронов обычно это неподеленная электронная пара, но иногда это я-орбиталь. Кислотно-основная реакция состоит в переносе протона от кислоты к основанию. (Протон не существует в растворах в свободном виде, а должен быть прикреплен к электронной паре.) Когда кислота отдает протон, остающаяся частица все еще сохраняет электронную пару, которая ранее образовывала связь с протоном. Эта вновь образовавшаяся частица, по крайней мере теоретически, может снова захватить протон и потому является основанием. Его называют сопряженным основанием кислоты. Всем кислотам соответствуют сопряженные основания, а всем основаниям — сопряженные кислоты. Любую кислотно-основную реакцию можно описать уравнением [c.326]

    Биполярные апротонные растворители имеющие высокую диэлектрическую постоянную и большой дипольный момент, сильно сольватируют растворенное соединение. Благодаря тому, что их электронная плотность локализована на атомах кислорода (диме-тилсульфоксид, диметилформамид, Л -метил-2-пирролидон, простые эфиры и др.), они являются активными акцепторами протона дри образовании водородной связи, и весьма эффективно сольватируют катионы. Анионы биполярными растворителями сольватируются слабо, особенно если они жесткие, мало поляризуемые. Соли в таких растворителях обычно диссоциируют с образованием сильно сольватированных катионов и слабо сольватированных анионов. [c.162]

    Образование сольватных комплексов происходит за счет делокализации электронов донорных орбиталей электроотрицательных атомов молекул растворителя на акцепторные орбитали катионов. Для анионов сольватация та же, но донором электронов выступает анион, а акцептором — протон молекулы растворителя. Связь между анионом и молекулой растворителя реализуется по типу водородной. Энергетическая равноценность связей в сольватных комплексах предполагает гибридизацию орбиталей катионов и анионов, тип которой в свою очередь определяет геометрическую структуру сольватных комплексов и координационные числа ионов. [c.274]

    В результате поляризации карбонильной группы на атоме углерода возникает частичный положительный заряд. Нуклеофильная группа X реагента Н—X передает свободную пару электронов карбонильному углероду с одновременным перемещением я-связи к атому кислорода. В результате возникает промежуточная частица, содержащая два заряда. Связь Н—X в интермедиате вследствие положительного заряда на атоме X будет сильно поляризована, что в конечном счете приведет к отрыву Н+, в то время как отрицательно заряженный атом кислорода, будучи основанием, склонен присоединить протон. В результате происходит перенос катиона водорода от X к кислороду. В протонсодержащих растворителях (например, в воде или этаноле) сам растворитель может быть донором и акцептором протонов, поэтому совсем необязательно, чтобы тот протон, который оторвался от X, присоединялся бы к атому кислорода. [c.117]


    Во-первых, смещение электронов двойной связи карбонильной группы к атому кислорода приводит к образованию частичного положительного заряда на атоме углерода, что вызывает индуктивный сдвиг электронной плотности от атома водорода в связях С—ОН и О—Н. Вследствие этого водородный атом легко можно удалить из молекулы под действием основания. Действительно, ионизация карбоновых кислот становится ощутимой только в присутствии подходящего акцептора протонов (например, Н2О) и вообще может не приниматься в [c.144]

    Эти упрощенные схемы соответствуют суммарным реакциям, в которых наблюдается некоторая аналогия, так как восстановители — доноры электронов, а кислоты — доноры протонов, тогда как окислители — акцепторы электронов, а основания — акцепторы протонов Донор 1 + Акцептор 2 Акцептор 1 + Донор 2 [c.297]

    Протонные растворители особенно сильно сольватируют растворенные соединения. Они не только доноры протонов при образовании водородных связей, но также и акцепторы протонов за счет содержащихся в их молекулах атомов кислорода с неподеленными электронами. Поэтому протонные растворители в равной степени эффективно взаимодействуют и с катионами и с анионами, образуя вокруг них сольватные оболочки. [c.162]

    В соответствии с наличием или отсутствием дипольного момента и величиной диэлектрич. проницаемости 8 различают Р. полярные и неполярные. Кроме того, молекулы Р. могут выступать в качестве доноров (акцепторов) протонов или электронов. Различают четыре группы Р. 1) протонные (вода, спирты, карбоновые к-ты и др.), к-рые являются хорошими донорами протонов и обладают высокой диэлектрич. проницаемостью (е > 15) 2) апротонные диполярные (нек-рые апротонные амиды, кетоны, сульфоксиды и др.), обладающие высокой диэлектрич. проницаемостью, но не обладающие донорно-акцепторными св-вами 3) электронодонорные (напр., эфиры) 4) неполярные (сероуглерод, углеводороды), к-рые обладают низкой диэлектрич. проницаемостью (е < 15) и не обладают донорно-акцепторными св-вами ни по отношению к водороду, ни по отношению к электрону. [c.184]

    Атом-акцептор должен обладать районами высокой отрицательной плотности, способными к взаимодействию с Н+. Идеальными акцепторами являются неподеленные пары электронов атомов второго периода периодической системы элементов (Р, О и Ы). Функциональные группы, наиболее часто играющие роль донора и акцептора протона в водородной связи, представлены в габл. 31. [c.85]

    Определения основания по Бренстеду (акцептор протона) и Льюису (донор пары электронов в реакции с кислотой) практически совпадают. Но определения кислоты расходятся, как мы видим. Кислота Бренстеда - донор протона, а кислота Льюиса -акцептор основания (вещества, имеющего неподеленную пару электронов). [c.487]

    На поверхности внешней мембраны происходят окислительные реакции трикарбоновых кислот или цикла Кребса и окисление жирных кислот. Следовательно, именно здесь протекает большинство реакций, которые дают энергию и исходные вещества для клеточного роста и синтеза органических веществ. Электроны, которые образуются в ходе окислительных реакций на поверхности внешней мембраны, с помощью НАД переносятся на поверхность внутренней мембраны. Получив электрон, НАД+ переходит в восстановленную форму НАД-На, которая, отдавая электроны мембранным частицам, снова окисляется. Эту реакцию катализирует фермент оксидаза. Далее электрон передается кислороду, который в процессе аэробного окисления является акцептором протонов. В переносе электрона от НАД-Нг к молекулярному кислороду участвуют И различных соединений, которые объединены в четыре комплекса. Комплексы отделены один от другого липидными слоями. Последние этапы переноса электронов катализируют цито-хромы. В результате деятельности [c.19]

    Льюисовская кислота представляет собой акцептор пары электронов, в отличие от кислоты по Бренстеду — донора протона. Основание по Бренстеду является акцептором протона. Так, в реакции [c.411]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    Кислоты и сила кислот. По Льюису, кислота — акцептор, а основание-донор электронной пары. Кислотами, по Льюису, являются AI I3, ВРз, Н+ и т. д. Согласно определению Бренстеда, кислота является донором, а основание — акцептором протона. Каждая кислота Бренстеда сопряжена с основанием  [c.158]

    Процессы кислотно-щелочного катализа катионный катализ). К этому типу он относит реакции, не связанные с переходом электронов, а зависящие от способности катализаторов образовывать катионы или протоны. Сюда относятся, в первую очередь, кислоты, являющиеся донорами протонов, и основания—акцепторы протонов, а также различные катализаторы типа А1С1з и алюмосиликаты. [c.171]

    Частица, представляющая на связь двухэлектронное облако, называется донором-, частица со свободной орбиталью, принимающая эту электронную пару, называется акцеппюром. В данном примере донор — гидрид-ион Н", акцептор — протон Н" ". [c.60]

    Каждое основание, которое мы обсуждали до сих пор, будь то ОН , Н О, какой-нибудь амин и ш анион, является донором электронной пары. Любое вещество, обладающее свойствами основания в рамках представлений Бренстеда - Лаури (т.е. акцептор протона), с точки зрения Льюиса, также является основанием (до1юром электронной пары). Однако в теории Льюиса допускается, что основание донируег электронную пару не только ее акцептору Н . Поэтому определение Льюиса значительно расширяет круг веществ, которые могут рассматриваться как кислоты Н представляет собой отнюдь не единственно возможную, с точки зрения Льюиса, кислоту. Рассмотрим, например, реакцию между КН, и ВРз. Эта реакция возможна по той причине, что в валентной оболочке ВРз имеется вакантная орбиталь (см. разд. 7.7, [c.99]

    Более общую точку зрения на природу кислот и оснований, а также и на их диссоциацию выдвинул Г. Льюис, определивщий кислоту как акцептор пары электронов, а основание—как донор пары электронов. Его концепция идет дальше теории Бренстеда — Лоури и не связывает кислотно-основные свойства веществ с наличием в них протона. По Льюису, взаимодействие между кислотой (ЗОз) и основанием (Н2О) с образованием Н2504 можно выразить следующим образом  [c.119]

    Водородная связь, образованная с карбонильным кислородом, уменьшает его электроотрицательный характер благодаря оттягиванию электронов к водороду в водородной связи, а это приводит к увеличению силы карбоновых кислот в гидроксилсодержащпх растворителях по сравнению с фенолами. Этими же причинами объясняется изменение относительной силы кислот других химических групп ири переходе от растворителей, являющихся донорами и акцепторами протона, к растворителям, которые являются только акцепторами. [c.292]

    Е торым структурным фрагментом называют группировки, обеспечивающие процессы переноса электронов и протонов. Сюда относят полупроводниковые цепи и структуры, ответственные за так называемое трансгидрироваиие нли перепое водорода. Легко видеть, что этот тип структурных фрагментов всецело связан с необходимостью привлечения углерода, а также других органогенов, способных образовывать двойные связи и служить донорами и акцепторами протонов. Нетрудно видеть также, что эти группировки служат началом или полупроводникового, т. е. окислительновосстановительного, или кислотно-основного катализа. [c.197]

    Электрофильные и нуклеофильные. реакции можно рассматривать как частный случай обобщенных кислотно-основных реакций, в основе которых лежит теория Льюиса. Классическое определение кислот и оснований (по Брёнстеду) было основано на том, что кислоты — это доноры протонов, а основания — акцепторы протонов. Льюис ввел другое определение кислот как соединений, способных принимать электронные пары, а оснований— как компонентов, способных отдавать такие пары. Под это определение попал ряд соединений, ранее, в рамках классической теории, не рассматривавшихся в качестве кислот или оснований. Так, например, трифторид бора XXXIX принимает пару электронов азота триметиламина с образованием комплекса ХЬ [c.47]

    Первая стадия является ферментативной и завершается образованием неустойчивого промежуточного продукта (иминокислота), который на второй стадии спонтанно без участия фермента, но в присутствии воды распадается на аммиак и а-кетокислоту. Следует указать, что оксидазы аминокислот (Ь- и О-изомеров) являются сложными флавопротеинами, содержащими в качестве кофермента ФМН или ФАД, которые выполняют в этой реакции роль акцепторов двух электронов и протонов, отщепляющихся от аминокислоты. Оксидазы Ь-аминокислот могут содержать как ФМН, так и ФАД, а оксидазы О-аминокислот-только ФАД в качестве простетической группы. Схематически реакции окислительного дезаминирования аминокислот с участием коферментов могут быть представлены в следующем виде  [c.432]

    Современные электронные теории органической химии оказались в высшей степени полезными для целого ряда разделов химии, поскольку с их помощью удалось связать реакционную способность соединений с их химическим строением. Наиболее успешно эти теории были использованы для объяснения относительной силы органических кислот и оснований. По определению Аррениуса, кислотами являются соединения, которые в растворе дают ионы водорода Н+, в то время как основания образуют ионы гидроксила 0Н. Эти определения были вполне правильными до тех пор, пока речь шла только о реакциях, идущих в водных растворах. Поскольку представления о кислотах и основаниях оказались весьма полезными для практики, были предприняты попытки сделать их более общими. Так, Брёнстед определил кислоты как вещества, способные отдавать протоны, т. е. как доноры протонов, а основания — как акцепторы протонов. Рассмотрим в качестве примера первую ионизацию серной кислоты в водном растворе как кислотноосновной процесс  [c.71]

    Решение. Чтобы получить ожидаемое значение вклада вандерваальсова притяжения в величину теплоты сублимации аммиака, примем линейное изменение теплоты сублимации, обусловленной вандерваальсовым притяжением, в изоэлек-тронном ряду СН4, ЫЙз, НаО. Отсюда значение для ЫНз будет равно (8-1-11 )/2= 10 кДж-моль , если использовать значения щля СН4 и Н2О, приведенные и рассчитанные в примере 9.1. Таким образом, энергия водородной связи в аммиаке составляет 29— 10=19 кДж-1Моль на молекулу ЫНз. Аммиак имеет три водородных атома (доноров водородной связи), но только одну пару электронов — акцептора протонов водородной связи. Электронная пара образует три равных примерно /з N—Н--Ы водородных связи, каждая с энергией /з = 6 кДж-моль . Значение 19 кДж-моль составляет максимальную энергию N— Н-"Ы водородной связи, [c.253]

    На предложенной Снайдером треугольной диаграмме растворители разбиты на восемь групп, различающихся по типу селективности (рис. 6.1). Крайние группы I, II, V я VIII имеют наиболее ярко выраженную селективность в группу I ходят акцепторы протонов (простые эфиры, амины), в группу VIII—доноры протонов (хлороформ, вода, м-крезол), в группу II—доноры-акцепторы (спирты) и в группу V—растворители, предпочтительно взаимодействующие с веществами, имеющими большой дипольный момент (метиленхлорид, дихлорэтан). Растворители группы VII (ароматические соединения, нитроалканы) характеризуются повышенным взаимодействием с акцепторами электронов. Принадлежность растворителя к определенной группе также указана в приложении 2. [c.131]

    Способность атома В быть акцептором протона при образовании B. . также определяется в осн. величиной электростатич. потенциала вблизи этого атома в молекуле BR. Наиб, прочные связи с данным донором протона образует атом О в оксидах аминов, арсниов, фосфинов, сульфидов атом N в аминах. Слабее комплексы, образуемые атомом О карбонильной или алкоксильной группы еще ниже протоноакцепторная способность атома О в группах NOj, SO2, атома N в группе =N, атома S в тионной и тио эфирной группах, я-электронов ароматич. систем и кратных связей. Слабые акцепторы протонов-атомы галогенов в алкилгалогенидах, причем это св-во уменьшается в ряду F, С1, Вг, I. Рост электроотрицательности заместителей или включение своб. пары электронов атома В в сопряжение (как в атоме N амидов или ароматич. аминов) приводит к понижению его протоноакцепторной способности. [c.403]

    Катализ на твердых кислотах и основаниях. Для катализаторов кислотно-основного типа специфика твердого тела не выражена так резко, как для полупроводников и металлов. Активные центры кислотных кат. представляют подвижные протоны И (центры Бренстеда) или атомы, способные присоединять пару электронов (центры Льюиса), напр, атом А1 на пов-сти AljOj. Соотв. основными центрами являются акцепторы протона или доноры электронной пары, напр, атомы кислорода на пов-сти СаО, MgO и т.п. Кислотными бренстедовскими центрами простых оксидов металлов являются поверхностные гидроксильные группы, остающиеся после частичной дегидратации пов-сти при нагр., или молекулы Н О, координационно связанные с пов-стью. Для металла М, находящегося в начале каждого периода, гидроксильные группы имеют основные св-ва [...ОМ] [ОН] для находящегося в конце периода-кис-лотные [...ОМО] Н . Льюисовскими кислотными центрами служат координационно-ненасыщенные ионы, напр. A10J на AljOj. Эти центры способны взаимод. с реагирующей молекулой-донором пары электронов. Кислотными катализаторами являются оксиды металлов с большим отношением заряда иона к его радиусу - окси ды Мо, Zn, Са, РЬ и др. Их активность связана с положением металла в периодич. системе и возрастает в периодах при переходе к V-VII группам, а в группах-при переходе к [c.540]

    Растворители для Р.э-как правило, полярные жидкости (чистые шш смешанные). Чем больше диэлектрич. проницаемость е р-рителя, тем значительнее ослабляется сильное электростатич. притяжение противоположно заряженных ионов, что способствует возшгеновеншо в р-ре ионов. Интенсивное взаимод. последних с молекулами р-рителя приводит к связыванию нонов с. молекулами р-рнтеля (см. Сольватация). Важна также способность молекул р-рителя выступать в качестве доноров нлш акцепторов протонов или электронов. В зависимости от этих двух св-в различают четыре группы р-рителей 1) протонные р-рнтели (вода, спирты, карбоновые к-ты и др.), к-рые являются хорошими донорами протона и обладают высокой диэлектрич. проницаемостью (е > 15) 2) апротонные диполярные р-рители (иек-рые апротонные амиды, кетоны, сульфоксиды и др.), обладающие высокой диэлектрич. проницаемостью, но не обладающие донорно-акцепторными св-вами в отношении протона  [c.190]

    Существенный вклад в распределение электронной плотности пептидной группы цвиттер-ионной формы (II) должен сказаться в увеличении отрицательного заряда на карбонильном кислороде (по сравнению с ацетоном), что и подтверждается результатами расчета интенсивностей ИК-полос поглощения (см. табл. П.З и II.6). Это полностью согласуется также с таким известным экспериментальным фактором, как предпочтительное протонирование амидов и пептидов по атому кислорода [41], а не азота, как это обычно имеет место. Амиды являются слабыми основаниями значения рКа, например, у ацетамида и N-метилацетамида составляют соответственно 0,35 и 1,0. В то же время они могут выступать и как слабъ е кислоты, рЕа кислотной диссоциации у формамида равно 17,2, а у ацетамида - 17,6 [42]. В соответствии с этим пептидная группа проявляет двойственную способность к образованию водородных связей, выступая одновременно в качестве акцептора протона (С=0) и его донора (N-H)-Образование водородных связей ведет к еще большей поляризации групп, [c.150]

    Кислоты и основания. в течение длительного. времени определялись как вещества, которые ири растворении в воде образуют соответственно ион водорода и гидроксильный ион. Это оиределение, введенное Аррениусом, не учитывает того факта, что, свойства, характерные для кислот и оснований, могут проявляться также в других растворителях. Более общее определение принадлежит Брёнстеду, который рассматривает кислоту как вещество, выделяющее протоны (донор протонов), а основание как вещество, присоединяющее протоны (акцептор протонов). Еще более широкое определение дано Льюисом, считающим кислотой любое вещество, которое принимает пару электронов, а основанием — любое вещество, которое отдает пару электронов нейтрализацию же он определяет как образование координационной связи между кислотой и основанием. [c.149]

    Активационный механизм и структура переходных состояний точно не установлены, однако известно, что удаление и X происходит синхронно, карбкатионы и карбанионы как устойчивые интермедиаты не образуются. Изотопное замещение водорода Н на дейтерий В в акте образования я-связи не происходит. Экспериментальные исследования показали, что в переходном состоянии 71-компоненга ст-связи С-С не образуются. Следовательно, а,71-конверсия электронов происходит за вершиной потенциального барьера, в ходе быстрого превращения переходного состояния в конечные продукты. В элементарной лимитирующей реакции галогеналканы КГ, реагирующие по Е2-механизму, выступают как двухцентровые реагенты, с которыми синхронно взаимодействуют акцептор протона (основание) и донор протона (кислота, протонодонорный растворитель). Следовательно, реакцию можно рассматривать не как бимолекулярную, а как по меньшей мере тримолеку-лярную (ЕЗ). Однако третий реагент — протонодонорный растворитель присутствует в сфере реакции в большом избытке и в кинетическое уравнение не включается. Поэтому кинетическое уравнение для Е2-реакций [c.212]

    В первых трех реакциях акцептором протона и электрона является НАД(Ф), передающий их ФАД, в четвертой реакции — 8а-гистидил-ФАД. Одновременно с окислением уксусной кислоты и переносом водорода вдоль цепи дыхания происходит фосфорилирование АДФ в АТФ [4301, причем на один атом восстанавливаемого кислорода образуется 3 моля АТФ, вероятно, на следующих этапах  [c.561]


Смотреть страницы где упоминается термин Акцепторы протонов электронов: [c.620]    [c.244]    [c.322]    [c.257]    [c.53]    [c.34]    [c.113]    [c.142]   
Общая химия (1964) -- [ c.457 ]




ПОИСК





Смотрите так же термины и статьи:

Акцептор

Акцептор протонов

Акцептор электронных пар



© 2025 chem21.info Реклама на сайте