Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности излучения и поглощения газов

    Газообразные углеводороды, прозрачные для видимого излучения, интенсивно поглощают инфракрасное (тепловое) излучение определенных длин волн, особенно в области 3,3—15 ц. Зависимость прозрачности газа для инфракрасного излучения от длины волны этого излучения называют инфракрасным спектром поглощения газа. Для его измерения наполняют газом трубку с прозрачными окошками на торцах и помещают ее в инфракрасный спектрометр на пути инфракрасных лучей от источника с непрерывным спектром (накаленный до 1200—1800° тугоплавкий стержень). Устанавливая спектрометр поочередно на различные длины волн и измеряя интенсивность излучения, определяют, для каких лучей газ прозрачен и какие лучи н насколько интенсивно он поглощает. Результаты выражают в виде графика, представляющего проценты прошедшего сквозь газ излучения в зависимости от длины волны или частоты. В качестве примера таких графиков на рис. 50 даны инфракрасные спектры поглощения н-бутана и изобутана. [c.185]


    ОСОБЕННОСТИ ИЗЛУЧЕНИЯ И ПОГЛОЩЕНИЯ ГАЗОВ [c.199]

    Если излучение от таких ламп падает на поверхность материала, над которой протекает газ с невысокой температурой, то поглощение энергии излучения будет происходить тут же у поверхности материала. В случае невысокой теплопроводности такого материала тонкий слой у его поверхности будет подвергаться быстрому нагреванию, в то время как внутри (если продолжительность облучения невелика) материал будет оставаться холодным. Этот метод особенно важен для сушки окрашенных и лакирован-ных поверхностей применяется-он также и для сушки других защитных покрытий. [c.312]

    Важной особенностью многоквантовых механизмов возбуждения является возможность использования суммарной энергии нескольких фотонов, хотя для каждого отдельного фотона энергия квантована в соответствии с соотношением Планка. Оптическое поглощение теперь уже зависит от интенсивности падающего излучения, т. е. закон Ламберта — Бера (разд. 2.4) не выполняется. Такое поведение наиболее понятно для многоквантового процесса возбуждения с участием виртуальных промежуточных уровней. Система, полностью прозрачная при низкой интенсивности облучения, может поглощать излучение той же длины волны, но при высокой интенсивности. Хороший пример поглощения прозрачным газом обсуждается в разд. 5.5 флуоресценция в парах цезия возбуждается интенсивным излучением, частота которого не соответствует ни одному из однофотонных переходов. [c.75]

    Более высокую чувствительность и точность определений фосфора можно получить, работая в ближней вакуумной области спектра (160,0—200,0 нм). Работа в этой области также налагает свои специфические требования на особенности конструктивного решения прибора. Оптическая часть прибора откачивается до вакуума 1,10 мм рт. ст. и изготовляется из материалов, не поглощающих излучений. Регистрирующая часть делается фотоэлектрической, чтобы исключить поглощение в слое желатина. Штативная часть выполняется отдельно и заполняется газом, не поглощающим излучение в данной области спектра (обычно аргоном), а также облегчающим условия прохождения разряда. [c.74]

    Поскольку интенсивность очень мягких рентгеновских лучей (1—100 KeV) зачастую можно определять с большей эффективностью, чем интенсивность у-лучей, они представляют существенный интерес при исследованиях с радиоактивными индикаторами. Особенно велико значение этих рентгеновских лучей в тех случаях, когда отсутствуют другие виды излучения. При этом основным видом взаимодействия излучения с веществом является фотоэлектрическое поглощение, так что ионизационные камеры и счетчики должны иметь слабо поглощающие окошки и их следует наполнять газом с высоким коэфициентом поглощения. При измерении интенсивности радиоактивных образцов существенное значение имеет определение поглощения в самих образцах, поскольку эти рентгеновские лучи поглощаются сильнее, чем большинство 8-частиц, особенно в присутствии элементов с большим атомным номером. Для введения соответствующих поправок на поглощение в радиоактивных образцах можно пользоваться теми же теоретическими и практическими методами, которые были описаны для -частиц. [c.53]


    Молекулы в газе или жидкости имеют случайную ориентацию в пространстве. При поглощении света таким образцом никакое направление не является преимущественным, и интенсивность поглощения есть величина, усредненная по всем молекулам и не зависящая от угла падения или направления поляризации излучения. Для кристаллических твердых образцов ситуация совершенно иная. Рассмотрим монокристалл, в котором все молекулы ориентированы одинаково, т. е. монокристалл только с одной молекулой в элементарной ячейке. Поглощение излучения таким кристаллом происходит так же, как в гипотетическом эксперименте, рассмотренном в предыдущем параграфе, если пренебречь межмолекулярными взаимодействиями. В этом случае следует ожидать сильных изменений интенсивности поглощения для различных углов падения и особенно для различных направлений поляризации. Мерой этих различий является дихроичное отношение (дихроизм), которое обычно определяется как отношение оптических плотностей полосы поглощения, [c.17]

    Таким образом, коэффициент излучения данного тела зависит от степени его черноты. Поглощение лучистой энергии газами имеет две особенности в отличие от поглощения ее твердыми телами  [c.265]

    Измерение интегрального аналитического сигнала (площади пика) в значительной мере исключает мешающие влияния. Этот способ целесообразен при атомизации в равновесных или близких к ним условиях (например, с платформы Львова, при прекращении протока инертного газа через кювету). Недостатком измерения площади пика, в частности при низких поглощениях, является большая ошибка при разрешении сигнала и нулевой линии, в особенности в области затухания пика, когда часто повышается шум и происходит сдвиг нуля в связи с сильным световым излучением раскаленного атомизатора. Значительные ошибки при определении интегральных сигналов могут возникать в системе, когда в атомизаторе еще находятся свободные атомы и автоматически возрастает поток инертного газа. [c.83]

    За исключением водяного пара, первыми переменными по содержанию газами, привлекшими всеобщее внимание, были углекислый газ и озон. Сначала их изучение стимулировалось интересом к их роли в процессах, протекающих в живых тканях, а также в поглощении солнечного излучения, но постепенно обнаружилось, что они к тому же могут служить удобными метками (трассерами) для прослеживания атмосферной циркуляции и процессов обмена. С течением времени было обнаружено довольно много других газов, большей частью содержащихся лишь в небольших концентрациях некоторые из них были найдены совсем недавно. Каждый из этих газов имеет свои особенности и, следовательно, должен рассматриваться отдельно. Насколько это возможно, мы рассмотрим следующие вопросы, касающиеся указанных газов  [c.13]

    Поглощение происходит не одинаково для всех излучаемых длин волн. Так как распределение энергии есть функция температуры излучающего тела, то коэффициент поглощения зависит также от температуры излучающего тела. Зависимость коэффициента поглощения твердого тела от длины волны показана на рис. 28. 2. Селективность особенно выражена при поглощении лучистой энергии газами, которые прозрачны по отношению к излучению одних длин волн, но сильно поглощают другие. Коэффициент поглощения для каждого вещества зависит также от его собственной температуры, но в меньшей степени, чем от темпера- [c.386]

    Концентрацию серусодержащих газов или любых других газов, содержащих элементы со средним или большим атомным весом (например, Р, С1, Аг, Вг, Кг), удобнее всего определять при помощи очень мягкого гамма-излучения, например излучения железа-55. Поглощение излучения железа-55 почти полностью опреде.пяется фотоэффектом, массовый коэффициент при котором растет пропорционально четвертой степени порядкового номера поглотителя. Столь сильная зависимость поглощения от порядкового номера приводит к тому, что средний коэффициент поглощения смеси, состоящей из легких газов (например. На, Ог, N2, СО2 и др.) и газов, содержащих элементы со средним или большим атомным весом, очень чувствителен к изменению концентрации последних. Таким образом, применение в ионизационных анализаторах излу- 4 чения железа-55 позволяет сделать эти анализаторы особенно чувствительными к элементам со средним и большим атомным весом. Благодаря этому ионизационные анализаторы могут быть использованы для определения концентра- ции некоторых примесей на фоне газа с непостоянным средним молекулярным весом. Так, при помощи излучения железа-55 можно определять содержание сероводорода в нефтяном газе, даже если углеводородный состав газа колеблется. При использовании альфа- или бета-излучения это невозможно, так как изменение состава углеводородов долн ю сказываться примерно в той же степени, как и изменение концентрации сероводорода. [c.231]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]


    При поглощении света одноатомными газами или парами атом поглощает энергию и затем отдает ее в виде флуоресцентного излучения. Однако часть этой энергии может быть использована для химической реакции при столкновении возбужденного атома с той или иной молекулой. Так, пары ртути поглощают волны длиной 2537 А. Моль возбужденных атомов ртути имеет избыточную энергию, равную 468 кДж. При помощи этого запаса энергии можно инициировать процессы, требующие меньшего количества энергии. В частности, пары ртути, поглотившие свет указанной длины волны, способны вызывать диссоциацию молекулы водорода на атомы, так как для диссоциации молекулы нужно 430 кДж/моль. Двухатомные молекулы при действии света иногда диссоциируют на свободные атомы. Возможность развития цепной реакции зависит от энергетических особенностей реакции. Так, разложение светом молекулы хлора в смеси водорода с хлором [c.347]

    Спектр излучения этих источников приближается к спектру абсолютно черного тела, непрерывность спектра нарушается поглощением атмосферных газов, особенно водяных паров и углекислого газа. При обычных условиях максимум излучения находится в области от 1,2 до 2 [1 соответственно температуре в сторону больших длин волн наблюдается быстрое падение интенсивности (рис. 36). Выше уже говорилось о возможности попадания на термостолбик паразитного коротковолнового излучения,) а также обсуждалось применение фильтров и экранов для его устранений (стр. 120).  [c.136]

    В большинстве работ, в которых в том или ином виде ставилась задача исследования разложения азота, авторы ограничивались измерением стационарных концентраций атомов на выходе из разряда или после его выключения с помощью различных методов N0 — титрования [244, 588—595], масс-спектрометрии [244, 596], электронного парамагнитного резонанса (ЭПР) [597, 598], пленочными полупроводниковыми зондами, сопротивление которых меняется при адсорбции атомов [290], поглощения УФ-излучения атомами [85, 291], а также по изменению давления газа в статической системе в результате поглощения атомов металлическими покрытиями [204, 296]. Отсутствие сведений о параметрах плазмы, особенно ВЧ- и СВЧ-разрядов и разряда в полном катоде, влияющих на скорости различных процессов, а также пространственная неоднородность параметров этих разрядов не позволяют использовать результаты этих работ для нахождения наиболее вероятных механизмов разложения азота. [c.218]

    Излучение и поглощение газов носят объемный характер. Поэтому такие факторы, как размеры и форма излучающего слоя, однородность его температуры, существенны при описании излучения газов. Спектры излучения — поглощения газов в отличие от многих твердых тел носят се-.гективный характер. Процессы излучения и поглощения происходят лишь внутри ряда дискретных полос спектра при других длинах волн (частотах) газ ведет себя как прозрачная диатермическая среда. Отмеченные особенности излучения и поглоще- [c.199]

    В последнее время для исследования излучения высокотемпературных газов и измерения сил осцилляторов различных газов широко используется метод ударных труб. Однако в большинстве случаев при определении вероятностей переходов но измеренному поглощению или излучению используется расчетное, а не измеренное значение температуры. В ряде случаев, особенно при измерениях за отраженной ударной волной, это может привести к большой погрешности. С этой точки зрения весьма важны работы по измерению температуры за ударной волной [43—48]. Подводя итог современному состоянию вопроса об измерении сил осцилляторов ряда молекул, можно утверждать, что для системы полос Шумана— Рунге кислорода, у-системы полос N0 и перехода 2 — П гидроксила сйлы осцилляторов определены с ошибкой меньшей 100%. Для других молекул, не менее важных для ряда практических примепепий, измерения проведены с гораздо меньшей точностью. [c.9]

    Проблема разрешающей способности еще более усложняется в связи с появлением паразитных пиков. Этот эффект особенно неприятен для проточного счетчика. Паразитные пики серьезно мешают измерению и даже маскируют измеряемую рентгеновскую линию. Паразитный пик обусловлен рентгеновским квантом, возникшим в газе счетчика в результате поглощения падающего первичного кванта. Когда возникшее в счетчике рентгеновское излучение покидает активный объем счетчика (вследствие прозрачности газа счетчика к собственному излучению), возникают паразитные пики, соответствующие разности энергии между возбуждающим рентгеновским излучением и рентгеновским излучением активного газа приемника. В качестве примера рассмотрим разделение импульсов Сп и Сг анализатором импульсов с аргоновым счетчиком. Энергия линии СиК равна 8,98 кэв, энергия линии АтКа — 3,2 кэв. Под действием линии СиХа возникает пик с энергией 5,8 кэв ЕсиКа — EatkJ- Этот пик почти точно совпадает с линией СтКа (6,0 кэв), и поэтому эта линия не разрешается. [c.221]

    Основной источник систематических ошибок связан с не-монохроматичностью излучения. Монохроматор может выделить из спектра излучения источника более или менее широкий, но всегда конечный участок спектра, который мы называем полосой монохроматора. Любая измеренная в точке величина (/, Т, В,) является эффективной, определенным образом усредненной в пределах полосы монохроматора, и результат такого усреднения в общем случае существенно зависит от ширины полосы монохроматора. Практически заметные отличия наблюдаемых величин от истинных будут в тех случаях, когда ширина полосы монохроматора сравнима с шириной полос (линий) поглощения и тем более когда первая превосходит вторую. При этих же условиях теряют силу простые законы поглощения (3)—(6). Величина наблюдающихся инструментальных отклонений от соотношений (3) — (6) зависит от величины погашения, соответственно произведения сх равные отно-сптельные изменения с и а по отдельности приводят к равным аффектам. То, что инструментальные отклонения являются в равной мере отклонениями от закона Бугера-Ламберта (3) и закона Беера (4), позволяет отличать их от действительных отклонений от закона Беера (4), наблюдающихся только при изменении концентрации с. Эффекты, связанные с немонохроматичностью излучения, особенно велики при измерениях спектров газов. Ширина полосы обычных призменных монохроматоров много больше расстояний между линиями и ширины линий вращательной структуры полос поглощения. Поэтому в пределах полосы моно- [c.494]

    Колебательно-вращательный спектр называют также ин -фракрасным спектром. Такие спектры очень разнообразны, особенно в случае свободных молекул (в газах при уменьшенном давлении). Разрешающая способность обычного спектрального прибора слишком мала для разделения индивидуальных линий, вызванных вращательными Переходами. При повышении давления или при конденсировании фаз эти линии исчезают, так как продолжительность существования отдельного вращательного состояния настолько сильно изменяется. при соударениях молекул, что наблюдается уширение и перекрывание линий. Спектры в ближней инфракрасной области 1(Л от 1000 до 50 000 нм) обусловлены колебаниями атомов. При этом, различают колебания вдоль валентных связей атомов (валентные) и колебания с изменением валентных углов (деформационные). Колебания возникают, если поглощение электромагнитного излучения связано с изменением направления и величины дипольного момента молекул. Поэтому молекулы, состоящие, например, из двух атомов, не могут давать инфракрасные спектры. Симметричные валентные колебания молекул СОг также нельзя возбудить абсорбцией света. Отдельные группы атомов в молекулах больших размеров дают специфические полосы поглощения, которые практически не зависят от строения остальной части молекулы. Этот факт используЮ Т для идентификац,ии таких групп. В симметричных молекулах колебания одинаковых групп энергетически равноценны и поэтому вызывают появление одной полосы поглощения. По такому упрощению ИК-спектра можно сделать вывод [c.353]

    При промышленном использовании радиационных процессов облучение нефтяного сырья тепловыми нейтронами может вызвать трудности, связанные с наведенной или искусственной радиоактивностью. Эта важная сторона радиационных технологических процессов будет рассмотрена дальше. Обычные формы остаточной радиации сильно осложняют последующее эффективное использование получаемых продуктов. Для достижения максимальной эффективности поступающее излучение должно в минимальной степени поглощаться стенками реактора и в максимальной — перерабатываемым сырьем. Применительно к парофазным реакциям в системах высокого давления электромагнитное излучение удовлетворяет первому из этих требований, но не удовлетворяет второму. Для излучения в виде элементарных частиц справедливо обратное положение поглощение стенками аппаратуры настолько интенсивно, что возникает необходимость к разработке специальных конструкций. На рис. 1 представлена специальная установка, сконструированная в исследовательском центре фирмы Эссо , для облучения газов под высоким давлением (до 70 ат) непрерывно обегающим пучком электронов, получаемым в электростатическом генераторе Ван-де-Граафа. Особенностью этой камеры является устройство непрерывно охлаждаемого окошка, оборудованного специальной решеткой, отверстия которой расположены под критическими углами для достижения максимальной проникающей способности движущегося йлектронного пучка. [c.115]

    Еще в первых работах А. Уолша (1959 г.) предлагалось использовать тлеющий разряд в полом катоде не только как источник резонансного излучения, но и как атомизатор. Действительно, катодное распыление обладает высокой стабильностью атомного потока, низкой степенью ионизации распыленных атомов и большими сечениями поглощения резонансных линий на центральном частоте Vq. Энергия ионов инертного газа (обычно аргона), бомбардирующих катод, позволяет с примерно одинаковой эффективностью распылять элементы с различ1шми термодинамическими характеристиками, а высокие плотность и энергия электронов в плазме разряда достаточны для разрушения любых химических соединеьшй определяемого элемента, поступивших из пробы в газовую фазу. Однако, как и в случае с графитовой кюветой Львова, несовершенство первых конструкций такого атомизатора привело к тому, что они не получили широкого распространения в аналитической практике. Новая волна интереса возникла в связи с изучением особенностей тлеющего разряда в. лампе Гримма (см. раздел 14.2.1), где реализуется аномальный тлеющий разряд постоянного тока при пониженном давлении инертного газа (0,1-3 кПа) и силе разрядного тока от 10 до 300 мА. Разряд происходит между плоским катодом (анализируемый образец) и цилиндрическим анодом, отстоящим от катода всего на 0,1-0,5 мм. Диаметр катода — не менее 20 мм. Обрабатываемая разрядом площадь определяется внутренним диаметром анода (8-10 мм). [c.843]

    Все газы, за исключением инертных и двухатомных газов, имеют характерные спектры поглощения в инфракрасной области. Эти спектры значительно более специфичны, чем спектры веществ в ультрафиолетовой области. Поэтому особенно целесообразно использовать их для анализа газовых смесей. Монохроматическое излучение мало доступно для производственного контроля. Попытки получения монохроматического инфракрасного излучения при помощи светофильтров не привели к успеху. В связи с этим при разработке регистрирующего прибора иНАЗ , основанного на поглощении инфракрасного излучения (рис. 160, 161), был выбран приемник излучения с избирательной чувствительностью, позволяющей проводить специфические измерения концентрации газов, поглощающих в инфракрасной области спектра. [c.756]

    Для измерения pH, рСОг и рОг при помощи электродов различных типов [16, 17] разработан ряд методик [18, 19, 20, 121]. Особенно большое значение в этом случае имеет метод отбора и хранения проб, поскольку парциальное давление кислорода и диоксида углерода в пробах цельной крови и плазмы, если не принять специальных мер предосторожности, сравняется с их парциальным давлением в воздухе. Кроме того, так как показания электродов зависят от правильности их градуировки и эксплуатации, их следует периодически (через каждые несколько часов) проверять, используя градуировочную смесь газов соответствующей концентрации. При помощи специальной компьютерной системы операцию градуировки можно автоматизировать. Физиологические жидкости удобно анализировать методом атомно-абсорбционной [22] и эмиссионной спектроскопии [23]. После соответствующей предварительной обработки исследуемый образец вводят в виде раствора в пламя, где происходит его атомизация. В эмиссионном спектральном анализе энергия пламени используется для возбуждения атомов. В результате перехода из возбужденного состояния в основное они испускают излучение с характеристическими длинами волн, интенсивность которого пропорциональна концентрации определяемых атомов в пламени. В атомно-абсорбционном анализе через атомный пар пробы пропускают излучение и регистрируют его. При этом интенсивность излучения снижается в соответствии с I) показателем поглощения элемента при той длине волны, при которой проводятся измерения, 2) длиной пути, пройденного излучением в образце, и 3) концентрацией определяемого элемента. Если первые две величины поддерживаются постоянными, то, измерив поглощение, можно установить концентрацию элемента. Эти два метода дополняют друг друга, и в каждом конкретном случае аналитик выбирает тот из них, который в данной ситуации более чувствителен и более точен. Эмиссионный спектральный анализ может быть менее селективен, чем атомно-абсорбцион-ный, и более подвержен спектральным помехам. Одни элементы можно определять и тем и другим методом (А1, Ва, Са), другие лучше анализировать методом атомно-абсорбционной спектроскопии (например, Ве, В1, Ли, 2п), третьи же целесообразнее определять атомно-эмиссионным методом (и, Ки, N. ТЬ и т. д.). [c.29]

    Галогениды водорода и его изотопов. Довольно много работ посвящено исследованию соединений галогенов с водородом и его изотопами, дейтерием и тритием [83—95]. Большая часть этих работ связана с оценкой и переоценкой тех данных, которые используются для расчета молекулярных постоянных. Другие работы выполнены с целью выяснения довольно интересных физических и химических явлений. Например, явление уши-рения линий поглощения при увеличении давления является основной проблемой при изучении пропускания инфракрасного излучения через атмосферу, а также в количественном анализе газов в инфракрасной области. Некоторые качественные особенности молекулярных взаимодействий в явлении уширения спектральных линий были выяснены при использовании в качестве исследуемых газов НС1 и СН4 в смеси с Не, Ne, А, Кг, Хе, SFe, О2, Н2, N2, СО, СО2, N2O, SO2 и НС [86]. Уширение линий поглощения газообразных НС1 и СН4 обусловлено взаимодействием молекул этих газов с молекулами примесных газов. Экспериментальные данные указывают, по-видимому, 1) на взаимодействие между индуцированным дипольным моментом молекул примесных газов и некоторыми неопределенными свойствами поглощающего газа, независимо от того, какой примесный газ используется, и 2) на взаимодействие квадрупольного момента молекул нримесиого газа с дипольным моментом [c.37]

    Оба радиоактивных изотопа обладают чрезвычайно мягким р-излучением (Ямако трития = 0,0185 Мэв макс—углерода-14 = 0,156 Мэв), которое может поглощаться уже очень тонкими слоями (толщина полуослаб-ления ( 1/2 трития < 0,2 мг/см , толщина полуослабления углерода-14 = = 2,7 мг/см у, поэтому работа с ними связана с известными трудностями. Для преодоления последних разработаны различные методы измерения, которые (особенно для трития) требуют затраты значительного времени и труда. В то время как измерения с веществами, меченными углеродом-14, можно проводить с торцовым счетчиком, для трития этот метод неприменим. При определениях активности малоактивных соединений, меченных тритием или углеродом-14, необходимо исключать поглощение излучения, вызванное слоем воздуха между образцом и окошком счетчика, а также и самим окошком. В этом случае активности твердых или малолетучих жидких проб можно измерять в 2я- или 4я-проточных счетчиках, поэтому из всех адсорбционных эффектов приходится считаться только с самопоглощением. Непременным условием воспроизводимости результатов является одинаковая толщина слоя и поверхность препарата. Для измерения твердых и жидких соединений используются также сцинтилляционные счетчики. При этом выход по счету значительно выше, чем в 2л-счетчике в сцинтилляционных счетчиках исследуемый материал находится в растворенном или суспендированном состоянии и самопоглощение отсутствует. Несмотря на наличие в настоящее время большого числа сцинтилляционных систем, состоящих из сцинтиллятора, растворителя для меченого вещества и (в случае необходимости) преобразователя длин волн, этот метод остается в значительной мере специфичным, зависящим от природы вещества [3]. Идеальным является такой метод, который позволяет измерять любые воспроизводимые образцы, независимо от вида меченого соединения. Подобным методом является измерение газа (например, СО5) в ионизационной камере [4—6] счетчиком Гейгера—Мюллера и пропорциональным счетчиком [7, 8]. Перевод вещества в СОз можно провести методами классического элементарного анализа или сжиганием по Ван Слайку [9, 10]. [c.426]

    Таким образом, в результате поглощения любого типа ионизирующей радиации веществом образуются треки возбужденных и ионизованных частиц (активные продукты). Продукты взаимодействия излучения с данным веществом в основном тг же самые независимо от вида или энергии излучения. Поэтому все типы ионизирующего излучения дают качественно одинаковые химические э4 екты. Однако излучения различных типов и энергий с разной скоростью теряют свою энергию в веществе, и плотность первичных активных продуктов в треках зависит от вида излучения. Следовательно, наблюдаемые различия в химических эффектах имеют закономерный характер (соотношение химических продуктов определяется типом излучения) — зависят от плотности первичных активных продуктов в треках. Такого рода трековый эффект играет особенно важную роль в жидкостях, где миграция активных первичных продуктов из трека затруднена в результате воздействия окружающих молекул. В газах активные продукты могут относительно легко покидать треки поэтому под действием разных типов [c.66]

    Некоторые физические эффекты, вызываемые радиационным сшиванием полимеров, уже обсуждались (стр. 179), но в полиэтилене, кроме того, проявляются изменения модуля эластичности ниже точки плавления, плотности, поглощения в инфракрасной области, прозрачности, ядерного магнитного резонанса и плавкости, которые можно объяснить исчезновением при облучении кристаллических областей [В1, В104, С67, С70, 059, Р46, К17, 572]. Исчезновение кристаллических областей связано с тем, что поперечные связи вызывают внутреннее напряжение в материале. При комнатной температуре напряжение мало влияет на кристалличность [С64, 584], но, если нагреть облученный полиэтилен выше температуры плавления кристаллов, а затем вновь охладить, то рекристаллизация затрудняется [ У38, ЛУ45]. Подобные эффекты наблюдаются во время облучения, если оно происходит при температуре, при которой многие из кристаллитов плавятся, например в ядерном реакторе. Эффект выражен тем резче, чем большее число кристаллитов плавится во время облучения [С47]. Другая причина влияния излучения на кристалличность состоит в том, что сшивание, в особенности вызываемое излучением с высокой линейной плотностью ионизации, эффективно разрывает кристаллиты на более мелкие единицы [564, 572]. Одновременно с процессом сшивания из облучаемого полиэтилена идет значительное выделение газа. Газ в основном состоит из водорода. Образование водорода линейно зависит от дозы вплоть до нескольких сот мегарад и в противопо-.ложность сшиванию не зависит от температуры в пределах от —200 до -Ы00° [С65]. Количественные данные приведены в табл. 47. Очевидно, что выход очень близок к выходу водорода из низкомолекулярных насыщенных н-углеводородов (табл. 19, стр. 91). [c.186]

    Отделение Р. от бария связано с большими трудностями, поскольку оба эти элемента обладают близкими химич. свойствами. Основные методы разделения Р. и бария 1) дробная кристаллизация или дробное осаждение, основанные на различии растворимости солей обоих элементов, особенно их хлоридов, бромидов, хроматов и иодатов, 2) ионообменные методы, используемые для окончательного отделения Р. от бария после предварительного обогащения дробным осаждением или дробной кристаллизацией. Лучшим ионообменным способом отделения Р. от других щелочноземельных элементов является поглощение их на сульфостирольных катионитах с последующим элюированием р-ром цитрата или ацетата аммония возрастающей концентрации. Вымывание катионов происходит в следующей последовательности Са, Sr, Ва, На. Радий вымывается лишь при концентрации ацетата аммония, равной AM. Использование этого метода затруднительно при работе с большими количествами Р. из-за разложения смолы и выделения газа нод действием излучения, а также из-за образования свободнох серной к-ты (при использовании сульфосмол), приводящей к осаждению Р. в колонке. Менее распространены методы отделения Р. от бария, основанные на адсорбции микроколичеств Р. на силикагеле, целлюлозе и др. адсорбентах на электролизе растворов галогенидов Р. и бария (отношение количеств Р. и бария на ртутном катоде увеличивается при уменьшении плотности тока) и др. [c.219]

    Такими же ступенчатыми процессами, более или менее сложными, объясняется ионизация иаров ртутп при поглощении резонансной линии ртути 2537 А (Ь=4,9 эл.-в). Особенно большое значение в некоторых вопросах газового разряда имеют ионизация газа собственным излучением. На первый взгляд кажется, что согласно соотношению (32,1) такая [c.121]

    Законы излучения чёрного тела. Под излучением мы будем понимать в этой главе, с одной стороны, процесс испускания различными телами электромагнитных волн, с другой, — явление распространения этих волн в среде. Во втором случае мы будем применять наравне со словом излучение также слово радиация, особенно, когда применение термина излучение к обоим процессам могло бы повредить ясности изложетптя. Весь ко мплекс явлений, сопровождающих электромагнитное излучение, заставляет рассматривать это явление, с одной стороны, как распространение электромагнитных волн, с другой стороны, как распространение особых частиц — световых квантов или фотонов. В этих элементарных частицах как бы сосредоточена вся энергия излучения в строго определённых количествах, или квантах. Каждый фотон всегда несёт с собой энергию, равную /гм, где V — частота колебаний в соответствующей электромагнитной волне, а /г — постоянная Планка, имеющая размерность действия (т. е. произведеция энергии на время) и равная 6,54 10 + + 0,5% эрг сек ). При взаимодействии с атомами и молекулами или электронами фотоны либо целиком поглощаются с переходом энергий излучения в другие виды энергии (поглощение света твёрдыми телами, фотононизация газов в объёме, внещний фотоэффект и т. д.), либо отдают лишь часть своей энергии, продолжая двигаться всё с той же скоростью света (эффект Комптона, комбинационное рассеяние света). В этом случае изменяется лищь частота V соответствующих фотону электромагнитных волн. Импульс фотона равен . [c.313]

    В главе II рассматриваются вопросы кинетики диссоциции двухатомных молекул в среде молекулярного газа. Характерная особенность кинетики диссоциации в молекулярных средах обусловлена процессами обмена колебательными квантами между реагирующими молекулами и частицами среды. В начале главы приведены данные о константах скорости обмена колебательными квантами, вычислена функция распределения колебательной энергии для квазистационарной стадии диссоциации и сформулировано выражение константы скорости диссоциации, зависящей от температур колебаний и поступательно-вращательного движения. Далее рассмотрена взаимосвязь процессов колебательной релаксации и диссоциации, проявляющаяся в сильных ударных волнах и при поглощении двухатомным газом ИК-излучения лазера. [c.4]

    Тонкие пленки металлов обладают аномальным максимумом поглощения в близкой инфракрасной и видимой области спектра [4, 5]. Особенно подробно изучено поглощение тонких пленок золота. Теория аномального поглощения пленок золота разработана X. Вольтером [6] и В. Хэмпе [7]. Согласно этой теории, наблюдаемый на опыте максимум поглощения (или максимум функции 2nk = / (i)) связан с гранулярным строением очень тонких слоев металла и объясняется коллективным движением электронов — колебанием плазмы, которая представляет собой электронный газ в поле положительных ионов решетки металла. По наблюдаемой зависимости 2nk от длины волны падающего излучения можно рассчитать в классическом приближении резонансную частоту колебаний плазмы. Согласно [c.108]

    Этот закон остается верным для чистых веществ и растворов в пределах доступности экспериментального измерения интен-сивдастей. Нри работе могут быть обнаружены кажущиеся отклонения от закона Ламберта, но они почти всегда либо зависят от разрешения, особенно в областях, где коэффициент поглощения очень быстро изменяется с длиной волны, либо объясняются наличием паразитного излучения с длинами Волн, отличающимися от той длины, на которую установлен прибор (стр. 102). В то время как в случаях чистых гомогенных жидкостей и чистых твердых веществ при учете определенных зависимостей коэффициенты поглощения и погашения характерны для данного вещества (коэффициент погашения является оптической плотностью при толщине слоя, равном единице), этого уже нельзя, очевидно, сказать в отношении растворов и газов, когда интенсивность света, прошедшего через единичную толщину слоя, зависит от нонцентрации. [c.68]

    Хотя натрий и не имеет особенно значительной космической распространенности, он довольно обилен во вселенной, а его спектр очень удобен для наблюдения. Поэтому его линии поглощения хорошо известны в спектрах межзвездного газа и в спектрах всех звезд, за исключением самых горячих (в атмосфере которых почти все атомы натрия ионизованы) и некоторых самых холодных (где его линии блендируются молекулярными полосами). Яркие линии натрия обнаруживаются в спектрах новых звезд и у небольшого числа аномальных звезд, но в общем они поразительно редки в звездных спектрах. Они наблюдаются у случайных комет, оказывающихся в непосредственной близости от Солнца они также присутствуют в излучении ночного неба, особенно в течение сумерек. [c.50]


Смотреть страницы где упоминается термин Особенности излучения и поглощения газов: [c.183]    [c.151]    [c.151]    [c.456]    [c.56]    [c.110]    [c.89]    [c.67]   
Смотреть главы в:

Тепло- и массообмен Теплотехнический эксперимент -> Особенности излучения и поглощения газов




ПОИСК







© 2024 chem21.info Реклама на сайте