Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение фоновое

    Так как в жидкости протекают и другие процессы поглощения звуковой энергии, обусловленные вязкостью, теплопроводностью, ориентацией диполей (фоновое поглощение), то в общем случае [c.295]

    Поправкой на фоновое поглощение Z)a полимера можно пренебречь, так как эта величина при указанной концентрации раствора очень мала. При значительно большей концентрации полимера (с = 4 г/л) >2 = 0,085. [c.206]


    В условиях анализа поглощение разделяемых ионов проводится, как правило, в присутствии большого количества фонового электролита (кислоты, соли, комплексообразующего реагента и т. п.). При этом основную часть емкости ионита занимают ионы фонового электролита, и поглощение (или вытеснение) небольщих количеств анализируемых ионов не может существенно изменить набухаемость ионита. Поэтому константы обмена, которые определяются в условиях, близких к аналитическим, т. е. в некотором интервале значительных концентраций ионов фонового электролита и малых концентраций исследуемых ионов, и рассчитываются по упрощенному уравнению Никольского (122), являются достаточно надежными для характеристики поглощаемости ионов и суждения о возможности их разделения. [c.176]

    Для количественной характеристики относительной селективности поглощения ионов Ni и N2 на ионообменнике, содержащем ионы М фонового электролита, пользуются коэффициентом разделения [c.178]

    Вариант 2. Разделение проводят при определенной концентрации комплексообразующего реагента, зависящей от прочности (констант устойчивости) комплексных соединений разделяемых металлов. Типичные кривые изменения коэффициентов распределения двух катионов Мх и Ма, образующих комплексы различной прочности, на катионите и анионите при возрастающей концентрации анионов комплексообразователя приведены на рис. 56. Кривые катионного и анионного поглощения могут перекрываться в различной степени в зависимости от относительной прочности комплексных соединений. Абсолютная величина Kd зависит от концентрации ионов фонового электролита, в частности, от концентрации катиона, вводимого в систему вместе с комплексообразователем (катионный обмен), или от концентрации аниона когда она слишком велика (анионный обмен). На основании экспериментальных [c.199]

    Можно использовать два метода измерений. При первом методе измеряется интенсивность эмиссии вторичного излучения, характерная для металла покрытия эта эмиссия возрастает с увеличением покрытия до предельной толщины, хотя будет обнаружено небольшое излучение, вызванное разбросом фонового излучения от незащищенного основного металла. Второй метод основан на изменении интенсивности эмиссии вторичной радиации, характерной для основного металла она уменьшается с увеличением толщины покрытия (благодаря поглощению [c.138]

    Зеемановская коррекция фона основана на том, что наличие магнитного поля не влияет на неспецифическое поглощение. тг-Компонента поглощается как определяемым элементом, так и частицами, даюш ими фоновое поглощение, в то время как сг-компонента поглощается только последними. Используя поляризаторы и/или модуляцию магнитного поля, можно провести последовательное вычитание фона. [c.53]


    Двухлучевая схема обладает рядом преимуществ. Любые флуктуации интенсивности источника компенсируются. Можно также устранить влияние поглощения излучения фоновыми компонентами, такими, как водяные пары или оксид углерода, содержащимися в воздухе. Полосы поглощения этих веществ ясно видны в спектре, полученном на спектрометре с однолучевой схемой (рис. 9.2-5). Детектирование сигнала осуществляется при помощи быстрого переключения аналитического луча и луча сравнения прерывателем с частотой 10 Гц. [c.172]

    Пробы, не обладающие поглощением в УФ-области, можно обнаружить с хорошей чувствительностью на коммерческих УФ-детекторах с помощью непрямого УФ-детектирования. Для этого к буферу добавляют электролит, обладающий УФ-поглощением, подвижность которого близка к подвижности разделяемой пробы. Количество добавленного вместо пробы электролита (механизм вытеснения) должно быть чрезвычайно мало из-за соблюдения условия необходимой электронейтральности, так что буфер в данном случае будет обладать более высокой прозрачностью, что выражается в появлении отрицательного пика. Это схематично представлено на рис. 28. Примеры применения даются в разделе, посвященном анализу ионов. Чувствительность обнаружения при непрямом УФ-детектировании зависит от молярного коэффициента экстинкции добавляемого фонового электролита, поглощающего в УФ-области, и соответствует чувствительности обнаружения нормального УФ-поглощения. [c.39]

    Важным показателем ландшафтно-геохимической обстановки является рельеф. В определенных условиях этот таксономический показатель оказывает весьма существенное влияние на поглощение ряда металлов растениями. Примером может служить детально изученный район в Центральном Казахстане (табл. 7). Одновременно с изменением фоновой концентрации Сг и Си [c.73]

    При изучении влияния платины на поглощение натрия установлено их соотношение, которое соответствует максимальному взаимному влиянию [280]. При определении натрия в соединениях вольфрама и молибдена [300, 468, 798, 1013] отмечается влияние фонового излучения вольфрама [798], а также возможное образование молибда-тов и вольфраматов натрия, термически устойчивых в пламени, что приводит к снижению эмиссии натрия. Исследования проводили в различных пламенах светильный газ—воздух, светильный газ— воздух—кислород, воздух—ацетилен, водород—кислород [468]. [c.122]

    Применительно к задачам спектрофотометрического анализа предложены некоторые изменения алгоритма МНК [96J. Описано также-применение МНК к спектрам поглощения смесей с фоновым поглощением [97,98] и к дифференциальным спектрам [97]. [c.73]

    Аналогичный метод описывается в работе [317], однако поглощение измерялось при длине волны 660 нм. В другой модификации метода восстановление проводится в среде хлорной кислоты действием ионов двухвалентного олова и аскорбиновой кислоты [318], которые устраняют фоновые наложения и обеспечивают стабильность цвета раствора. Для анализа воды предпочтительно восстановление сульфит-ионами [309]. [c.140]

    Еще большие чувствительность и селективность имеет детектор электронного захвата (ДЭЗ), принадлежащей к тому же классу ионизационных детекторов. Как следует из самого названия этого детектора, он работает по принципу поглощения электронов анализируемым соединением, что выдвигает определенные требования к структуре этих соединений. В ДЭЗ молекулы газа-носителя ионизуются под действием /3-излучения. Ионизация порождает тепловые электроны, которые вызывают стабильный фоновый ток, если к ячейке ДЭЗ приложена разность потенциалов. Если элюируемые из колонки соединения способны захватывать электроны, величина фонового тока понижается и на самописце появляется соответствующий сигнал. ДЭЗ, которые первоначально были использованы для высокочувствительного обнаружения галогенированных углеводородов, прекрасно зарекомендовали себя и при обнаружении производных аминов, амино- и оксикислот и других подобных соединений. Галогенированные ацилирующие агенты, преимущественно перфторированные, служат для введения электронозахватных групп в амино- и оксикислоты путем образования летучих амидов и эфиров. Чувствительность ДЭЗ зависит главным образом от структуры анализируемого соединения. Основное требование — это способность соединения принимать отрицательный заряд вследствие электронного захвата. Соответственно при помощи этого детектора можно обнаруживать галогенированные и нитроароматические соединения, многоядерные ароматические углеводороды и сопряженные карбонильные соединения. [c.55]

    Контролировать влажность химических продуктов нейтронным методом нецелесообразно, поскольку возможно наведение искусственной радиоактивности в облучаемом материале. Но если в такого рода измерениях и возникнет необходимость, то можно воснользо-вяпся способом, предложенным Вейдом [422]. Пробу помещают в алюминиевую кювету размером 20 X 10 X 3 см и облучают потоком нейтронов, пропущенных через кадмиевый фильтр для поглощения фоновых тепловых нейтронов. Замедленные в пробе нейтроны регистрируются с помощью гелиевого счетчика в течение 1 мин. Затем между пробой и счетчиком помещают дополнительный кадмиевый фильтр для той же цели и измерение повторяют. По разности находят истинное число тепловых нейтронов, замедленных пробой, а по калибровочному графику — содержание воды. Применение фильтров резко повышает точность определения, а также, частично, чувствительность (0,5% HgO в асбесте). [c.180]


    Нерастворимая в хлороформе часть продукта озонолиза — порошок красно-бурого цвета, дающий сигнал ЭПР. В ИК-спектрах наблюдается характерное для систем полисопряжения фоновое поглощение, понижена интенсивность алкильных групп, резко возросла интенсивность полосы карбонильных групп при 1710 см . На основании результатов элементного анализа и исследований физическими методами продуктов окисления озоном первичных нефтяных асфальтенов удалось установить, что при этом процессе происходит отщепление углеводородного обрамления полисо-пряженного ядра в структуре асфальтена. Полидисперсность алифатической части незначительна, так как в основном присутствуют радикалы с длиной углеводородной цепи Сг— s. Полученные данные свидетельствуют о том, что асфальтены построены из полисопряженных фрагментов, представляющих собой устойчивые к окислению поликонденсированные ароматические структуры, обеспечивающие специфику свойств асфальтенов, характерных для полисопрянсенных систем. Азот в основном содержится в конденсированных структурах (увеличение отношения N/ в 5 раз) сера в основном находится в мостиковых связях (уменьшение отношения S/ в 7 раз), соединяющих структурные элементы в молекуле асфальтенов. Увеличение отношения О/С почти в 40 раз в нерастворимом продукте озонолиза свидетельствует о том, что значительная часть его подверглась окислению. [c.141]

    Для ДОВ характерно проявление вклада вращения вдали от электронных переходов. Поэтому ДОВ представляет более эффективный метод обнаружения слабой оптической активности химически чистого вещества по сравнению с КД. Это обусловливает предпочтительное использование ДОВ в аналитических целях. Из-за фоновых эффектов кривые ДОВ приобретают индивидуальность и служат удобным инструментом для идентификации. Спектры ДОВ находят применение при изучении кинетики процессов. По аналогии с изобестическими точками в спектрах поглощения наблюдают изовращательные точки на нулевой линии ДОВ в процессе, например, рацемизации (общие точки пересечения кривых удельного вращения [а рис. Х.1). [c.202]

    Применение автоматического дейтериевого корректора имеет следующие ограничения 1) необходима точная юстировка дейте-риевой лампы и основного источника для того, чтобы в обоих случаях возбуждалась одна и та же аналитическая зона 2) применение дейтериевого корректора позволяет надежно учитывать фоновое поглощение до 0,4—0,5 отн. единиц поглощения н 3) нри включении корректора возрастает шум и ухудшаются пределы обнаружения элементов. [c.179]

    Данные рис. 3 показывают, что интенсивность спектров поглощения этих остатков различна, в то время как наклон кривых практически одинаков, иными словами, наблюдается вертикальный сдвиг спектров друг относительно друга в основном за счет фонового поглощения. С целью исключения фонового поглощения для оценки коксообразующей способности сырья коксования предлагается брать разность удельных коэффициентов поглощения при 400 и 435 нм ( ЛК = Kwo — К435)  [c.32]

    Вместо абсолютных значений изм яемого параметра (оптической плотности, флуоресценции или потенциала), в кинетических методах измеряют изменение этого параметра в ходе реакции как функцию времени. Таким образом, статические сигналы, вызванные, к примеру, фоновым поглощением образца, не вносят погрешности. Это является одним из основных преимуществ кинетических методов перед статическими измерениями. В то же время кинетические методы тре ют строгого контроля измерений времени и температуры. Преобразованный для обработки сигнал должен иметь максимально возможную точность по шкале времени. Температуру тоже следует ковтролировать достаточно строго (колебания ее ее должны превышать 0,01-0,1 С), так как она оказывает значимое влияние на скорость реакции (см. разд.6.2.3). [c.352]

Рис. 8.2-11. Пример аналитического сигнала (2) с малой оптической плотностью в присутствии интенсивного фона (1)ъ методе ГП-ААС. Во — истинное значе-гше фонового поглощегшя при измерегши поглощения определяемого элемента, В и В2 — фоновое поглоще-1ше, измеряемое до и после поглощегшя определяемого элемеггта соответственно. Рис. 8.2-11. <a href="/info/1569586">Пример аналитического</a> сигнала (2) с малой <a href="/info/3038">оптической плотностью</a> в присутствии <a href="/info/141277">интенсивного фона</a> (1)ъ методе ГП-ААС. Во — истинное значе-гше фонового поглощегшя при измерегши поглощения определяемого элемента, В и В2 — фоновое поглоще-1ше, измеряемое до и после поглощегшя определяемого элемеггта соответственно.
    Помимо того, что поглощение может сопровождаться флуоресценцией (разд. 8.3), взаимодействие рентгеновского излучения с атомами также может привести и к рассеянию, которое может быть упругим (эффект Рэлея) или неупругим (эффект Комптона). При упругом рассеянии электроны атома, вовлеченного в процесс, ускоряются падающим рентгеновским излучением и сами становятся источником излучения, имеющего такие же точно энергию и длину волны, что и падающее рентгеновское излучение. Б отличие от этого, эффект Комптона отражает корпускулярную природу электромагнитного излучения, и его можно рассматривать как столкновение между протоном и электроном, которое приводит к потере энергии и увеличению длины волны рентгеновского излучения в соответствии с законами сохранения энергии и количества движения. С счастью, неупругое рассеяние играет незначительную роль для таких длин волн, как СиКа (1,5418 А) или МоКа (0,7107 А), которые широко используются в рентгеновских экспериментах. Этот эффект, тем не менее, приводит к относительно высокому фоновому сигналу рассеяния. В процессе упругого (когерентного) рассеяния ускоренные электроны приводят к возникновению рассеянного излучения, испускаемого во всех направлениях. [c.389]

    Подход с проточной ячейкой — наиболее простой вариант работы ЖХ-ФПИК. Хроматографический элюат проходит через проточную ячейку непосредственно после колонки, и интерферограмма непрерывно записывается в течение всего анализа. Использование алгоритма Грама—Шмидта, как в ГХ-ФПИК, для расчета отдельной хроматограммы поглощения в режиме реального времени неосуществимо, поскольку подвижная фаза сильно поглощает и небольшие изменения в поглощении при элюировании определяемых веществ с трудом детектируются. Поэтому обработка данных обычно проводится по окончании хроматографического анализа после вычитания спектра поглощения подвижной фазы. Чтобы предотвратить полное поглощение в полосе растворителя, необходимо использовать короткий оптический путь, обычно менее 0,2 мм для органических подвижных фаз и менее 0,03 мм для водных смесей. Вместе с тем обстоятельством, что коэффициенты поглощения в среднем ИК-диапазоне значительно меньше по сравнению с коэффициентами поглощения в УФ- и видимом диапазонах спектра, это приводит к сравнительно низкой чувствительности этого метода, порядка 0,1-1 мкг. Дополнительным недостатком этого интерфейса является то, что в области поглощения растворителя никакой информации о поглощении определяемого вещества не может быть получено, поскольку правильное вычитание затруднительно, особенно для обращенно-фазовых смесей растворителей. Более того, вычитание фонового сигнала не может быть проведено удовлетворительно, если необходимо градиентное элю- [c.630]

    В качестве еще одной пары менее токсичных растворителей (но с более высоким фоновым поглощением) можно использовать С2О4 в области 1000 — 4000 см (2,5 — 10 мкм) и н-гептан в области 250-1000 см- (10-40 мкм). [c.86]

    Использование ЭВМ при регистрации таких спектров может сделать анализ водных растворов практически доступным, если не рутинным [20]. Техника подготовки остается той же, что и ранее описанная для микрообразцов. Вначале из спектра образца вычитается фоновое поглощение чистой воды. При этом следует обратить внимание на достижение теплового ршновесия, так как спектр воды чувствителен к изменению температуры (рис. 4.21). Необходимо также иметь в виду [c.123]

    Для производных спектров поглощения предложено несколько равноправных количественных характеристик, каждая из которых линейно связана с концентрацией анализируемого вещества. Наиболее употребительными характеристиками являются разница амплитуд двух соседних экстремумов противоположного знака и амплитуда пика, определяемая относительно базовой линии. Реже используют абсолютные значения производных. Исходя из обычных правил дифференцирования, легко показать, что постоянное фоновое поглощение элиминируется уже в первых производных, вклад компонентов с линейной зависимостью поглощения от длины волны отсутствует во вторых производных, а квадратичных компонентов суммарного спектра смеси — в производных третьего и более высоких порядков и т. д. Таким обра- [c.25]

    НОГО таким об])азом. Конкретное обозначение может быть или не быть основано на характеристиках, важных в препаративпой ЖХ. Например, квалификация для пестицидов обычно рклю-чает проверку на наличие соединений, влияющих на отклик электронозахватного детектора в газохроматографическом анализе, что не важно в препаративной ЖХ. Квалификация для ЖХ имеет различные значения в случае различных растворителей. Для водорастворимых растворителей, используемых в обращенно-фазной ЖХ, проверяется уровень поглощения в УФ-области или наличие флуоресцирующих загрязнений, которые дают фоновый щум или становятся видны при градиентном элюировании. В случае других органических растворителей более важными факторами, определяющими их маркировку для жидкостной хроматографии, могут быть тип, наличие или отсутствие конкретных стабилизаторов, содержание воды, показатель преломления, особые загрязнения и т.д. [c.95]

    Поглощение в УФ-свете. Пуриновые и пиримидиновые производные в УФ-свете проявляются в виде темных пятен на слегка флуоресцирующем фоне бумаги. Это наиболее чувствительный метод обнаружения (1 мкг), он позволяет локализовать вещество без химической модификации. Следует защищать глаза от действия УФ-света. Локализацию веществ на хроматограмме можно наблюдать визуально или фотографировать контактным методом. Если в качестве растворителей использовались фенол или коллидин, их следует сначала удалить многократным промыванием эфиром. В случае барбитуровых кислот используют предварительное опрыскивание 0,5 М NaOH. Чтобы увеличить фоновую флуоресценцию, а следовательно, и контрастность, можно использовать опрыскивание 0,005%-ным флуоресцеином в 0,5 М растворе NHj. Однако это не рекомендуется делать, если вещество предполагается элюировать с бумаги для последующей спектрофотометрии. [c.412]

    Рпс. 8.18. Спектр поглощения прп детектировании ко методу отражения, отнесенный к фоновому сигналу, возникающему прп сканировании пластинки без веществ количество кофенна 80 нг к = 195-.300 нм. [c.201]


Смотреть страницы где упоминается термин Поглощение фоновое: [c.204]    [c.419]    [c.206]    [c.179]    [c.177]    [c.177]    [c.104]    [c.426]    [c.287]    [c.287]    [c.287]    [c.347]    [c.151]    [c.251]    [c.26]    [c.269]    [c.511]    [c.175]   
Современная аналитическая химия (1977) -- [ c.159 ]




ПОИСК





Смотрите так же термины и статьи:

спектрометры фоновое поглощение



© 2025 chem21.info Реклама на сайте