Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разветвленные парафины

    Предельные углеводороды. Возможность количественного структурногруппового анализа по спектрам поглощения в ближней инфракрасной области впервые была показана Розе в 1938 г. Интенсивности полос обертонов валентных колебаний связи углерод — водород были измерены для ряда к-парафинов, разветвленных парафинов, нафтенов и ароматических соединений. Ввиду того, что ни одна из этих полос не разрешается пол- [c.330]


    Олефины пз парафинов обычно удаляются перемешиванием с концентрированной серной кислотой. При этом образуются полимеры и а лкил сульфаты. Следует, однако, отметить, что серная кислота вызывает перегруппировки некоторых разветвленных парафинов [1081. Более надежным методом является повторное восстановление над активным катализатором с последующим растворением перманганата. [c.427]

    Определенная степень изомеризации наблюдалась в присутствии окислов или сульфидов некоторых металлов, например молибдена или вольфрама. Вообще же зти вещества не являются специальными катализаторами изомеризации. Высокие температуры, требуемые для осуществления процесса в присутствии этих катализаторов, не способствуют пи увеличению разветвленности парафинов, ни расширению пятичленного кольца в шестичленное при изомеризации циклопарафинов, так как при исследовании равновесия установлено, что эти реакции лучше идут при низких температурах. Кроме того, расход исходного вещества на такие реакции, как дегидрогенизация, термическое разложение и гидрокрекинг, увеличивается при более высоких температурах. [c.15]

    Хлористый алюминий получил некоторое промышленное применение при производстве бензина из газойля в период первой мировой войны и позже [57]. Бензин, получавшийся таким образом, был бесцветным, не содержал олефинов, в значительной степени был свободен от сернистых соединений и имел сравнительно высокие антидетонационные качества, последнее, по-видимому, является следствием изомеризации м-парафинов в разветвленные парафины. [c.97]

    Нет никакого количественного правила для предугадывания точек плавления чистых углеводородов однако качественно это можно сделать точка плавления имеет тенденцию к увеличению вместе с ростом молекулярного веса и с увеличением симметрии молекулы. Точки плавления нормальных парафинов представлены в табл. 111-7. Эти значения хорошо согласуются с данными для низших кристаллических парафинов, когда вещества сравниваются на основе молекулярного веса этот факт является лучшим доказательством химического строения макрокристаллических нефтяных парафинов. Влияние симметрии намного превосходит влияние молекулярного веса. Если добавить боковые цепи к нормальным парафинам, то разветвленные парафины обычно кипят намного ниже, чем нормальные парафины с самой длинной цепью в молекуле. Встречаются, однако, исключения, когда замещение ведет к образованию компактной очень симметричной молекулы например, 2,2-диметилпропан плавится при —20° С, в то время как и-пентан плавится при —130° С, и 2,2,3,3-тетраметил бутан плавится при 104° С, а п-октан плавится при —57° С. Подобные количественные правила применимы и для циклических соединений. [c.192]


    Применение масс-спектрометрии более или менее подтвердило результаты, полученные при химическом исследовании. Было найдено, что в исследуемом продукте содержится 90% нормальных парафиновых углеводородов, 8% разветвленных парафинов, остальное — нафтены [18, 19]. [c.515]

    Было осуществлено значительное количество синтезов разветвленных парафинов для установления понижения температуры плавления и различия физических свойств между обоими типами углеводородов. Температура плавления уменьшается по мере роста разветвленности. Например, 7,8-диизопропил тетрадекан ( jo) плавится при —69° С [38], в то время как нормальный углеводород Сго — при -f 38° С. [c.516]

    На практике выделение -парафинов может проводиться как в результате сорбции измельченным твердым карбамидом, обычно применяемым в виде суспензии в растворителе, так и путем смешения нефтепродукта с гомогенны. раствором карбамида, в результате чего из смеси выделяется белый сметанообразный осадок, после фильтрования и сушки превращающийся в кристаллическое вещество. Кристаллы комплекса обладают гексагональной структурой, в которой молекулы карбамида располагаются спиралеобразно и связываются за счет водородных связей между атомами кислорода и азота смежных молекул, повернутых друг относительно друга на 120° и образующих круглый в сечении канал. Важнейшая особенность структуры комплексов — строго фиксированный диаметр этого канала, лежащий в пределах (5-=-6)-10" мкм. Внутри канала легко могут располагаться линейные молекулы парафина (эффективный диаметр молекулы (3,8- -4,2)-10 мкм] и практически не размещаются молекулы разветвленных парафинов, ароматических углеводородов (эффективный диаметр молекулы около 6- 10 мкм) и т. д. Этим свойством карбамидный комплекс напоминает цеолит. По другим признакам аддукт близок к химическим соединениям. Так, карбамид реагирует с углеводородами в постоянном для каждого вещества мольном соотношении, медленно возрастающем с увеличением длины цепочки, причем для различных гомологических рядов эти соотношения также несколько отличаются. Величины мольных соотношений, хотя и представляющие собой дробные числа (табл, 5.23), напоминают стехио-метрические коэффициенты в уравнении закона действующих масс. С возрастанием длины цепочки увеличивается и теплота образования аддукта. Эго, в частности, проявляется в том, что высшие гомологи вытесняют более низкие 1.3 -аддукта. [c.315]

    Бензины глубокого крекинга дистиллятного сырья имеют октановое число 65—70 состав их характеризуется наличием непредельных, ароматических и разветвленных парафинов. [c.235]

    Возможно, для разделения смесей парафинов на структурные изомеры нормального и разветвленного строения эффективным окажется комплексный метод, т. е. чередование обработки узких фракций п ара новы смесей карбамидом и тиокарбамидом. Последний будет образовывать кристаллические комплексы только с разветвленными структурами, практически не захватывая структуры нормального строения карбамид же дает кристаллические соединения включения преимущественно с нормальными парафинами, но частично и с разветвленными парафинами, прямая цепочка которых еще достаточно длинна, чтобы взаимодействовать с карбамидом. К сожалению, возможность практического использования для этих целей тиокарбамида до настоящего времени изучена очень мало. [c.67]

    Проверка формулы (8.10) для разветвленных парафинов показывает, что отклонения от более точных вычислений не превышали 5%, что вполне приемлемо при расчетах термодинамических функций. Затраты времени при использовании (8.10) во много раз меньше [165]. [c.95]

    Значительно более обещающими являются методы анализа степени разветвления, основанные на спектроскопических данных по инфракрасному поглощению. После работы Фокса и Мартина [62], приписавших связи СН валентные колебанпя, а также после систематических наблюдений Розе [131 на большом ряде модельных веществ различные исследователи [12, 16, 18, 23] пытались использовать эти данные для количественного определения в углеводородах групп СН3, СНд, СН (алифатических) и СН (аромати ю-ских). Из этих наблюдений могут быть сделаны интересные выводы о стспени разветвления парафинов и степени замещения ароматических угловодородов.  [c.386]

    В области масляных фракций % Сп разделен па две части, выражающие процентное содержа1Н1е углерода в /г-парафипе (% С,ш) и процентное содержание углерода в разветвленных парафинах, а также в боковых пара- [c.387]

    Состав бензинов и других фракций каталитического крекинга определяется способностью катализаторов крекинга (алюмосиликатов) вызывать изомеризацию и диспропорционирование водорода. В результате этих процессов в каталитических крекинг-бензинах преобладают разветвленные парафины, разветвленные олефииы с открытой цепью, алкилциклопентаны, циклопентены и ароматические углеводороды. В табл. 3 и 4 ясно показано, что нормальные парафины от пентана до октана, преобладающие в термических крекинг-бензинах и бензинах прямой гонки из нефти Мид-Континента, в каталитических крекинг-бензинах имеются в относительно небольшом количестве. Из парафинов более всего преобладают разветвленные парафины с одной метильной группой в боковой цепи, такие как метилбутаны и метилпентаны. Обычно алкилциклопентаны [c.50]


    Допускают, что реакция дегидрирования является первоначальной реакцией парафинов с серой затем сероводород освобождается, увеличивая количество образованных олефинов. Механизм реакции точно не установлен. Сульфирование ускоряется с увеличением молекулярного веса парафинов разветвленные парафины и циклопарафины сульфуризуются быстрее, чем соответствующие углеводороды с прямой цепью [723]. [c.148]

    Химический состав керосина из фракций мид-континентской нефти США был впервые описан Вагнером (Wagner [4]), а более подробно был изучен в Американском нефтяном научно-исследо-вательском институте иод руководством Россини и Мэйра (см. гл. I). В нем содержится значительное количество нафтенов и разветвленных парафинов. О малом содержании линейных парафинов можно судить по молекулярному весу и температуре замерзания фракций. [c.462]

    Бензиновые фракции разных нефтей отличаются по содержанию нормальных и разветвленных парафинов, пяти- и шестичленных нафтенов, а также ароматических углеводородов. Однако распределение углеводородов в каждой из этих групп в достаточной мере постоянно (1—31. За исключением бензинов нафтеновых нефтей, производство которых весьма ограниченно, среди парафинов значительно преобладают углеводороды нормального строения и мономе-тилзамещенные структуры. Относительное содержание более разветвленных изопарафинов невелико. Нафтены представлены преимущественно гомологами циклопентана и циклогексана с одной или несколькими замещающими алкильными группами. Такой состав, при содержании ЗО—70% парафинов и 5—15% ароматических углеводородов в бензинах, Ьбуслоапивает их низкую детонационную стойкость (табл. 1.1). Октановые числа бензиновых фракций, подвергаемых каталитическому риформингу, обычно не превышают 50. [c.5]

    Как видно из сообщения Хеслама и Рассела [9] при некоторых видоизменениях процесса удается избежать преобладания норма,льных и мало разветвленных парафинов. Повидимому, эти видоизменения сводятся к ускорению изомеризации нри замедлении скоростей гидрирования олефинов (использование повышенных температур, изомеризующнх добавок к катализатору гидрирования МоЗз и т. п.). При этом некоторая зависимость от рода исходного материала сохраняется, но даже из высокопарафпнистого сырья удается получить бензин с относительно хорошими, как это видно из табл. 44, антндетонацион-ными свойствами. [c.170]

    Из высокомолекулярных соединений нефти только парафиновы-е углеводороды по форме молекулы соответствуют первому (парафины нормального строения) или второму (разветвленные парафины) типу. Остальные высокомолекулярные соединения нефти, как углеводороды, так и гетероорганические соединения, нельзя отнести ио форме ни к одному из трех приведенных выше геометрических типов молекул. Наиболее правильное представление о форме молекул этих соединений может дать сравнение их с гроздью винограда [5]. Поэтому для характеристики формы молекулы высокомолекулярных соединений нефти, за исключением парафинов, следует ввести четвертый тип — гроздьевидный. Эта форма окажется, по-видимому, более приемлемой, чем три вышеупомянутые, также и для характеристики молекул таких высокомолекулярных природных соединений, как лигнин, природные смолы и др. Со временем появятся, вероятно, и синтетические высокомолекулярные соединения, приближающиеся по структуре молекул к гроздьевидиой форме. [c.14]

    Обобщение А. Д. Петрова [0—10], которое заключается в том, что разветвленные парафины с двумя боковыми цепями, стоящими рядом в центре молекулы с длинной цепью, являются наиболее выгодными для получения парафиновых углеводородов с низкими температурами плавления, подтверждается обширными экспериментальными данными. Справедлив также вывод и о том, что дальнейшее увеличение числа рядом стоящих в центре молекулы боковых цепей мало сказывается па изменении температуры плавления таких структур по сравнению с соответствующими моно- и, особенно, диалкилзамещенпыми изомерами с одинаковым суммарным числом атомов углерода в заместителях. [c.49]

    Из этих данных видно, что обработанные фенолом твердые углеводороды дистиллятной фракции 400—500° С туймазинской нефти весьма сильно отличаются по групповому составу от исходной смеси твердых углеводородов. В них совсем исчезают парафины разветвленного строения, содержащие в цени ароматические заместители, и в 2 раза уменьшается содержание парафинов нормального строения, имеющих в цепи ароматические ядра. Суммарное содержание парафинов с ароматическими ядрами уменьшается в 2,5 раза (с 19,1 до 7,5%), а суммарное содержание негибридизированных парафинов (парафины нормального и разветвленного строения, вместе взятые) в обработанном фенолом образце увеличивается в той же степени (на 11,5%), в какой уменьшается содержание парафиноароматических структур (11,6%). Особенно сильно возрастает (почти в 2 раза) содержание парафинов нормального строения, тогда как содержание разветвленных парафинов изменяется незначительно. [c.200]

    Приблизительно в 1940 г. Бенген в Германии обнаружил, что парафины нормального строения образуют твердые продукты присоединения к мочевине, взятой в виде раствора в метиловом спирте, в то время как парафины изостроения таких продуктов присоединения не дают [14, 15]. Разделение основано на том, что пространство между молекулами в кристаллической мочевине достаточно велико, чтобы там поместились молекулы н-парафинов, и мало для молекул изопарафинов. Эти соединения включения не являются соединениями в обычном смысле слова, ибо в них нет постоянного молярного отношения между мочевиной и углеводородом продукты присоединения содержат около 0,65—0,7 молей мочевины на каждую метиленовую группу углеводорода. Такие продукты присоединения легко отфильтровать и разложить нагреванием, растворением в воде и т. п. Этот метод позволяет выделить из сложных смесей парафины нормального строения с числом атомов углерода от 6 до 20 [16]. Разработка процесса была доведена до стадии полузаводской установки. Описанный метод не ограничен применением только мочевины и только метилового спирта как растворителя. Например, тиомочевина образует соединения включения с сильно разветвленными парафинами и с циклическими соединениями [17]. [c.39]

    Кроме термического крекинга, источником олефинов является также каталитический крекинг, при котором они получаются в больших количествах. Каталитический крекинг получил быстрое и широкое распространение под влиянием потребностей военного времени, поскольку он давал хорошие выходы высокооктанового бензина, являющегося основньш компонентом авиационного топлива с октановым числом 100. Каталитический крекинг заключается в нагревании паров нефтепродукта при умеренной температуре (450°) и низком давлении (1—15 ama) в присутствии естественного или синтетического алюмосиликатного катализатора. Существуют три способа проведения этого процесса. По одному из них пары углеводородов пропускают через неподвижный слой катализатора (процесс Гудри). При втором способе очень тонко измельченный катализатор, будучи взвешен в горячих парах углеводородов, увлекается ими в направлении их движения (процесс с текучим катализатором). По третьему способу катализатор в виде гранул механически передвигается в реакционной зоне противотоком к движению паров углеводородов (процесс термофор). Во всех случаях на катализаторе отлагается кокс, который приходится удалять выжиганием в токе газа, содержащего кислород в процессе Гудри выжигание проводят периодически, в процессах с псевдоожиженным слоем катализатора или с движущимся слоем (процесс термофор) — непрерывно. Полученный крекинг-бензин содержит большое количество сильно разветвленных парафинов, благодаря чему он и обладает высоким октановым числом. Как и следовало ожидать, принимая во внимание мягкие условия крекинга,, этилен присутствует в газах в очень небольшом количестве в основном крекинг-газы состоят из С3- и С4-углеводородов. Бутан-бутиленовую фракцию крекинг-газов в США используют для производства дивинила, необходимого для промышленности синтеаического каучука, а также для получения изооктана (гл. 12, стр. 208 и сл.). [c.110]


Смотреть страницы где упоминается термин Разветвленные парафины: [c.21]    [c.21]    [c.21]    [c.21]    [c.21]    [c.21]    [c.22]    [c.22]    [c.22]    [c.50]    [c.280]    [c.79]    [c.98]    [c.42]    [c.148]    [c.123]    [c.62]    [c.52]    [c.98]    [c.244]    [c.16]    [c.653]    [c.352]    [c.301]    [c.304]    [c.56]    [c.75]   
Углеводороды нефти (1957) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Разветвленные



© 2025 chem21.info Реклама на сайте