Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дислокации полные

    Основная особенность дислокационной деформации заключается в том, что при обходе вокруг линии дислокации полное приращение вектора упругого смещения отлично от нуля и равно вектору Бюргерса. Итак, дислокацией в кристалле мы будем называть особую линию D, обладающую следующими свойствами при обходе по любому замкнутому контуру L, охватывающему линию D (рис. 84), вектор упругого смещения и получает определенное конечное приращение Ь, равное (по величине и направлению) одному из периодов решетки. Это свойство записывается в виде [c.248]


    Полудислокации значительно более подвижные, чем полные, поскольку их векторы Бюргерса намного меньше межплоскостного расстояния [см. (291)]. Таким образом, теория дислокаций устра-180 [c.180]

    Относительно низкое значение прочности углеграфитовых материалов обусловливается наличием в них значительного количества дефектов кристаллической структуры (примеси, дислокации, границы зерен, поры и т. п.). Кроме того, на поверхности углеграфитовых материалов образуется некоторое количество микротрещин, которые являются концентраторами напряжений и при наложении напряжений приводят к полному разрущению материала. Поверхностные микротрещины возникают в процессе производства углеграфитовых материалов. В тех случаях, когда удается в значительной мере уменьшить образование дефектов решетки и поверхностных трещин, например при получении нитевидных кристаллов, прочность приближается к теоретическому пределу. [c.22]

    На рис. 39 показан один из двойников при увеличении в 25 000 раз и схематически — профиль этого двойника. Видна ступенька на границе двойника (имеет вид темной полосы), образовавшаяся вследствие выхода дислокаций. На другой границе двойника имеется канавка травления дислокаций, которые не успели разрядиться, так как были заторможены двойником. Видны также следы полных дислокаций. По-видимому, при двойниковании создается достаточно высокий уровень касательных напряжений для возникновения таких дислокаций, а пониженный поверхностный потенциальный барьер еще более снижает этот необходимый уровень напряжений. [c.126]

    Полные дислокации, образующиеся в матрице, препятствуют росту двойников в длину и ширину, и он со временем прекращается. Противодействие иногда бывает достаточным, чтобы локальные напряжения увеличились до величин, необходимых для зарождения новых двойников, которые затем растут вследствие механохимического растворения области накола. На рис. 40 показаны вновь возникающие двойники (угольные реплики с оттенением хромом). [c.126]

    Таким образом, хемомеханический эффект в данном случае проявляется в два этапа химическое растворение поверхности вызывает поток двойникующих дислокаций и рост двойников, а следующее затем механохимическое растворение двойников вызывает, поток полных дислокаций, ранее заторможенных нэ двойниковых границах. [c.128]

    На рис. 43 показан один из двойников при увеличении в 25000 раз и схематически — профиль этого двойника. Видна ступенька на границе двойника (имеет вид темной полосы), образовавшаяся вследствие выхода дислокаций. На другой границе двойника имеется канавка травления дислокаций, которые не успели разрядиться, так как были заторможены двойником. Видны также следы полных [c.128]


    В то время как одни двойники увеличивались в размерах, другие, достигнув предельной длины, исчезали вследствие механохимического растворения (сглаживания) деформационного микрорельефа с течением времени исчезали все линии двойников, а также и след накола. Одновременно с ростом наиболее активных линий и исчезновением менее активных вблизи накола возникали выстроенные группы движущихся петель полных дислокаций, а также ямки травления вдоль исчезнувших при растворении двойниковых линий число дислокационных петель увеличивалось одновременно с увеличением их размеров и протяженности групп в длину и ширину. [c.129]

    Однако в двойном электрическом слое диэлектрическая постоянная растворителя зависит от напряженности поля, которая достигает 10 —10 В/см. При такой напряженности наблюдается частичное или даже полное диэлектрическое насыщение в этом слое [20]. Тогда, как следует из рис. 67 и выражения (251), величина может достигать порядка 10 —10, что соответствует наблюдаемому на практике ускоренному растворению выступающих неровностей металла (электролитическое полирование, травление дислокаций, растворение ступенек в местах выхода линий пластического скольжения). [c.171]

    Дальнейшим развитием молекулярно-кинетической теории роста и растворения кристаллов является дислокационная теория. Теория несовершенного роста кристаллов, или теория дислокаций [363— 368], является современной теорией и претендует на наиболее полное описание роста кристаллов из газовой фазы. Она объединяет все лучшее из существовавших до нее теорий. Основная идея ее заключается в том, что плоским двумерным зародышем новых атомарных или молекулярных слоев является дислокация — чисто геометрическое нарушение в кристаллической решетке. Дислокация обеспечивает наличие готовых ступеней на поверхности грани кристалла независимо от расстояния продвижения ступеньки, благодаря чему рост кристаллической грани становится непрерывным, так как разрастание слоя происходит достаточно быстро и считается, что оно не лимитирует скорости кристаллизации. [c.96]

    Уровень остаточных напряжений в результате закалки и последующего отпуска определяется, в основном, релаксационной способностью стали, во многом зависящей от концентрации в ней углерода. Содержание углерода в стали менее 0,1 %, недостаточное для полного закрепления дислокаций и образования карбидов, заметно поднимает температуру начала мартенситного превращения (до 380 °С и выше), вызывает минимальное изменение объема при мартенситном превращении, обеспечивает (при небольших количествах хрома, марганца и молибдена) высокую прокаливае- [c.249]

    Авторы концепции водородного охрупчивания основную причину разупрочняющего воздействия среды видят в так называемой водородной хрупкости ма териалов [26, 41, 99]. Наличие в высокопрочных сталях растворенного водорода (1 см на 100 граммов металла) заметно сказывается на их прочности. Отмечено, что водород, закрепощая дислокации, уменьшает вязкость разрушения. Кроме того, наличие водорода в металле обусловливает высокие внутренние напряжения [94]. До настоящего времени еще нет полного единства взглядов на механизм водо-56 [c.56]

    Мы полагаем, что наиболее поразительной закономерностью поведения различных систем сплавов является общность эффектов, связанных с характером скольжения. Планарное скольжение может вызываться рядом факторов, включая уменьшение энергии дефектов упаковки, понижение температуры, ближний и дальний порядок, образование кластеров и разрезание выделение дислокациями. Все эти факторы отмечались в разных местах данной главы и в предшествующих обзорах. Хотя корреляция планарного скольжения с КР и водородным охрупчиванием наиболее полно и подробно исследована для аустенитных нержавеющих сталей, она применима и в случае других аустенитных сплавов, алюминиевых сплавов, титановых а- и р-сплавов, а возможно, и в никелевых сплавах. Очевидным исключением служит семейство ферритных и мартенситных сталей, однако в этом случае число работ, в которых исследован характер скольжения, относительно невелико. Ниже обсудим возможность того, что в подобных сплавах тип скольжения не имеет большого значения, но предстоящие исследования этих материалов все же должны включать определение типа скольжения, например, с помощью сравнительно простой методики линии скольжения [201]. Это позволит установить, распространяется ли отмеченная корреляция на о. ц. к. стали. Часто высказываемое мнение о том, что в железе (и, как следствие, в стали) скольжение всегда носит сильно непланарный характер,— ошибочно. Например, понижение температуры делает скольжение в чистом железе заметно более планарным и [c.120]

    Из гипотезы, по которой взаимодействие частиц с дислокациями влияет на сопротивление КР в высокопрочных алюминиевых сплавах, прежде всего следует [144], что выделения в матрице (например, зоны ГП), а не выделения по границам зерен илн ЗСВ контролируют сопротивление КР. Чувствительность к КР в водном растворе хлоридов увеличивается по мере выделения в объеме зон ГП. Результаты последних экспериментальных исследований находятся в полном согласии с этими предположениями [233, 238, 239]. [c.295]


    Общая схема строения микрофибрилл в настоящее время выяснена довольно полно (главным образом с помощью электронной микроскопии и рентгеноструктурного анализа), хотя целый ряд подробностей еще продолжает дискутироваться. Микрофибриллы представляют собой агрегаты из нескольких так называемых элементарных фибрилл, в которых молекулы целлюлозы вытянуты продольно, а в поперечном направлении плотно упакованы в высоко упорядоченную кристаллическую структуру. Элементарная фибрилла (рис. 8) представлена стержнем с почти квадратным сечением (угол при вершине 86,5°) и стороной 35 А, На сечение приходится 36 цепей целлюлозы . В поперечном сечении элементарной фибриллы молекулы целлюлозы упакованы в правильную решетку и соединены между собой водородными связями. Соседние молекулы ориентированы антипараллельно, т. е. направление гликозидных связей у них противоположно. Примыкающие одна к другой антипараллельные цепи целлюлозы организованы в пары, между которыми образуются особенно прочные водородные связи. У концов отдельных молекул возникают дислокации, в которых соседние молекулы претерпевают небольшой изгиб, после [c.153]

    Значения >ь в наноструктурных и обычных материалах могут существенно отличаться. Оценка значения коэффициента диффузии с помощью уравнения (5.4) с учетом г = 15 с, а также Т = = 293 К, П = 1,3 X 10" м , С = 48 ГПа, оказалась равной = = 3,5 X 10 м /с. Полагая, что = Вьо ехр(- Ь/ВТ), где, согласно [241], Вьо = 2,35 х Ю м /с, для энергии активации зернограничной диффузии в наноструктурной Си получаем значение Qь 78 кДж/моль. Фактически реальное значение зернограничной диффузии (5ь может быть даже слегка выще, поскольку, как указывалось ранее, полная плотность дислокаций должна быть выще. Для плотности р и 2 х например, [c.190]

    Обрывы неполных слоев углерода, видимые иа поверхности трубок и кончиках конусов, говорят о том, что расширение и утолщение трубок происходит за счет роста островков с основными плоскостями, характерными для фафита, и Послойного роста на поверхности фубок. Зародышеобразование положительных., (пятиугольников) и отрицательных (семиугольников) дислокаций на открытых концах трубки приводит в результате к изменению направления роста и образованию различных морфологий. Для этих сфуктур характерен полный рост при обороте вокруг фубки, включающий образование пар пятиугольник - семиугольник. [c.92]

    Начальная стадия роста A1N пленки на 6Я-81С(0001) субстрате исследовалась в [29]. В процессе роста наблюдались особенности островкового типа, их слияние сопровождается появлением двойных позиционных границ, определяющих качество таких пленок. В [30] показано, что при статическом отжиге нитрида алюми- ния происходит деградация его структуры процесс протекает в четыре стадии, соответствующих 1) уменьшению плотности в кластерах дислокаций (1000—1200 °С) 2) образованию объемных границ (1400—1600 °С) 3) образованию тонких границ и возникновению ядер первоначальной рекристаллизации границ (1600— 1800 °С) 4) росту зерен, сопровождающемся образованием пор и осаждением растворенных элементов. Авторы [31] рассмотрели эффект влияния полного и парциального давления азота в процес- [c.7]

    В изучавшихся рентгенографически алмазах чаще всего наблюдались секториальные фигуры погасаний с лучами, более развитыми в сторону преимущественного роста кристалла, которые в течение полного поворота поляризатора четырежды погасают и просветляются (рис. 146). Этот тип погасаний ближе всего радиально-лучистым узорам двупреломления в алмазах с развитыми дислокациями роста, идущими к поверхности граней в виде пучков лучей. Вдоль направлений стыковки секторов роста граней и вблизи центра роста присутствуют узкие области интенсивного двулучепреломления, а в последнем случае наблюдается также крест радиальных изоклин, расходящийся при вращении поляризации в виде дуг различной кривизны (см. рис. 146, а, б). Интенсивное аномальное двупреломление в указанных зонах коррелирует с зафиксированной здесь же повышенной степенью раз-ориентировки волокон и часто наблюдается в отсутствие визуально фиксируемых механических включений. Характерной особенностью двулучепреломления в волокнистых алмазах является отчетливо видимая в переходной к затемнению области радиальная полосчатость изоклин (см. рис. 146, в), совпадающая по направлению с ориентацией ростовых волокон по секторам. Вместе с тем ни в одном из кристаллов не была зафиксирована зональная структура по октаэдру, для которой типичен узор двупреломления, параллельный граням (111). [c.401]

    Неупругое и пластическое деформирование можно рассматривать как следствие последовательного движения дислокаций и смещения связывающих областей. Поворотная модель дает полное молекулярное описание структуры полимера. И на этот раз имеется лишь слабое различие между упорядоченными н неупорядоченными областями. Печхолд указывает, что совершенный кристалл ПЭ может содержать до 4 поворотов на 1000 групп СНг, в то время как в структуре типа расплава их число достигает 200 на 1000. Хотя эта концентрация столь велика, что исключает и ближний, и дальний порядок, какая-то логика в организации пространства, заполненного цепными молекулами, должна сохраниться. Печхолд предложил подходящие модели — сотовую и меандровую (рис. 2.1, в). Он полагает, что последняя модель более вероятна и может существовать в частично кристаллических волокнах (рис. 2.18,6) и в каучуках [11, 14Г]. Упомянутые ранее а-, р- и 7-релакса-ционные переходы объясняются в рамках данной модели движением поворотных блоков, замораживанием вращения сегмента из-за отсутствия свободного объема и существованием поворотных ступеней и скачков соответственно в аморфной и кристаллической областях [11]. Хотя эксперименты по рассеянию нейтронов [100—104] в значительной степени опровергают наличие четкого меандрового упорядочения цепей, предложение Печхолда было в высшей степени плодотворным для изучения структуры аморфных областей. [c.53]

    Помимо рассеяния фононов на фононах, фононы могут рассеиваться в диэлектриках на других квазичастицах (экситонах, магнонах) точечных дефектах (примесных атомах, вакансиях и их комплексах) линейных дефектах (дислокациях) границах зерен в поликристаллах на случайном распределении изотопов данного химического элемента и т. д. Процесс переноса тепла, естественно, усложняется, что проявляется в усложнении зависимости коэффициента теплопроводности от температуры. Теоретическая оценка вкладов в полное теплосопротивление w = 1/к, вносимых перечисленными механизмами, очень сложна [7] и весьма приближенна. [c.155]

    Механизм наблюдаемого хемомеханического эффекта, исходя из теоретических и экспериментальных данных, можно представить следующим образом. Первоначальный пластический накол обусловил образование зародышей двойников сдвига, которые затем росли вследствие перемещения двойникующих дислокаций. связанного с химическим растворением поверхности кристалла, понижающим поверхностный потенциальный барьер и облегчающим движение этих дислокаций (хемомеханический эффект для двойникового сдвига). Полные дислокации, юзникавшие в матрице при деформировании, взаимодействовали с двойниковыми (в частности, препятствовали росту двойника, вызывая большие локальные напряжения), но, испытывая з>начительно большее сопротивление движению [c.127]

    Сплавы этого класса представляют простейший, в некоторых отношениях, случай, поскольку их поведение при водородном охрупчивании можно относительно легко связать с простыми физикометаллургическими свойствами. Как уже указывалось, имеющиеся данные позволяют предполагать (правда, не с полной уверенностью), что связанные с водородом потери пластичности обусловлены присутствием включений и выделений [72, 74, 87]. Последовательность событий при этом, по-видимому, такова. Дислокации, несущие водород, при деформации скапливаются около частиц, в результате чего динамически может создаваться высо кая локальная концентрация водорода [314]. Часть этого водорода может освобождаться в результате перекрывания полей напряжений дислокаций, а еще часть водорода будет захвачена включением [314]. Когда на растягиваемом образце начинает формироваться шейка, водород принимает участие в локальных процессах, и может либо снижать прочность границы раздела частица/матрица, либо стабилизировать малые полости или трещины, образующиеся в частицах, либо проникать в полости растущие вокруг частиц и содействовать их росту, за счет внутреннего давления Нг. Отметим, что последнее взаимодействие начинается только на стадии образования шейки. Все перечисленные процессы могут облегчать и ускорять обычное вязкое разрушение и делать его возможным при меньшей деформации, что, в свою очередь, соответствует потере пластичности и уменьшению относительного сужения, или же ускоренному растрескиванию при испытаниях на КР. Весь ход событий можно проследить по рнс. 52. [c.139]

    ИПД кручением под давлением 10 ГПа перлитной стали Ре-1,2 %С привела к полному растворению цементита и формированию пересьш енного твердого раствора углерода в а-Ре [66 (см. 1.2). Структура состояла из очень мелких (0,02 мкм), сильно разориентированных нанозерен. Отжиг при 523 К привел к формированию равноосных зерен, свободных от дислокаций и имеющих средний размер 0,05 мкм. [c.140]

    Пластическая деформация ОЦК-металлов всегда происходит в направлениях плотноупакованных рядов <111>, в которых атомы связаны максимально прочны.ми и самыми коротки,ми металлическими связями перекрытиями л- и с/-орбиталей. Эти направления скольжения в ОЦК-металлах играют исключительно важную роль и действуют во всех плоскостях скольжения. Однако ниобий, и в меньшей степени, хром и молибден отличаются ано.мальны.м поведение.м при пластической деформации кроме нормальной для ОЦК-металлов системы скольжения 110 <111>, у них реализуется и система 100 <100> по граням куба, В этих металлах легко образуются полные дислокации <100>, вектор Бюргерса которых больше, чем у дислокации 1/2<1И>, Иными слова- [c.44]

    Изменение свойств материала может происходить не только в результате воздействия различного рода сред, но и от вида приложенного нагружения. Наиболее опасным видом нагружения является циклическое нагружение, которое проводит к появлению и развитию трещин, а затем и к полному разрушению тела. Такой тип разрушения называют усталостным, а сам процесс - усталостью Изменение состояния материала при усталостном процессе отражается на его механических свойствах, макроструктуре, микроструктуре и субструктуре. Происходящие изменения можно разделять на стадии, которые зависят от исходных свойств материала, вида напряженного состояния и особенностей влияния внешней среды. Усталостное разрушение значительно отличается от разрушения, вызванного действием постоянной нагрузки. В основе усталостного разрушения металла лежит дислокационный механизм зарождения микроскопических трещин. Возникновение уста.постных трещии связывают с результатом циклического деформирования кристаллической решетки, когда максимальное значение напряжения за период цикла способно провести к пластическим сдвигам. Происходит интенсивное увеличение количества дислокаций и их движение, как в прямом, так и в обратном направлении. Существуют [c.401]

    Изменение запаса свободной энергии вещества при измельчении можно объяснить искажением кристаллической решетки, повышением ее дефектности или полным разрушением с переходом кристаллического вещества в аморфное состояние. Например, если идеальный монокристалл подвергнут механическим воздействиям, которые привели к образованию точечных дефектов кристаллической решетки или дислокациям, то изменение свободной энергии монокристалла равно сумме энергий всех дефектов и дислокаций. Если нарушение кристаллической структуры дошло до полной аморфи-зации вещества, то изменение свободной энергии можно рассчитать, исходя из энергии кристаллической решетки минерала. [c.808]


Смотреть страницы где упоминается термин Дислокации полные: [c.306]    [c.340]    [c.89]    [c.89]    [c.327]    [c.342]    [c.327]    [c.172]    [c.187]    [c.327]    [c.187]    [c.127]    [c.128]    [c.129]    [c.124]    [c.276]    [c.138]    [c.157]    [c.91]    [c.101]    [c.62]   
Обратимая пластичность кристаллов (1991) -- [ c.38 ]

Физико-химическая кристаллография (1972) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Дислокация



© 2024 chem21.info Реклама на сайте