Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластическая деформация сдвига

    Параметры т и 7, описывающие пластическую деформацию сдвига в монокристалле, могут быть связаны с макроскопическими параметрами, например описывающими пластическую деформацию одноосного растяжения образца, — напряжением о и деформацией е. Величина касательного напряжения на площадке S под углом 0 к оси растяжения равна т (6) ==0,5о sin 29 и достигает максимального значения т ах = при 0 = 45°. В поликристаллических металлах зерна характеризуются средним напряжением сдвига, несколько меньшим, чем максимальное значение (о/З) < т < (о/2). [c.42]


    Для достижения больщих деформаций материала используют различные способы — экструзию, прокатку, всестороннюю ковку и др. Сущность этих методов заключается в многократной интенсивной пластической деформации сдвига (когезии) с одновременным действием всестороннего сжимающего давления (аутогезия) обрабатываемого материала. [c.26]

    Трещины межзеренного сдвига инициируются при пластической деформации в результате смещений трех зе- [c.86]

    Пластическая деформация вызывается необратимым сдвигом макромолекул и других структурных элементов под действием приложенного напряжения. [c.135]

    Рассмотрим теперь образец с большей толщиной. Большая толщина образца приводит к стеснению и даже полному запрещению деформации вдоль фронта трещины (в направлении толщины). В этом случае возникает объемное напряженное состояние, при котором величина максимального касательного напряжения невелика (см. рис.3.31). Это, в свою очередь, затрудняет протекание-пластической деформации, отодвигая по напряжениям область значительных пластических деформаций. Возможно, что сопротивление материала отрыву будет достигнуто напряжением в некоторой области у фронта трещины ранее, чем разовьется заметное пластическое течение. Произойдет хрупкий скачок трещины или даже полное разрушение в хрупком состоянии. Если же сопротивление отрыву достаточно велико, по сравнению с сопротивлением пластической деформации, то пластические сдвиги будут накапливаться в направлении действия Ттах по площадкам, [c.207]

    Если к какому-нибудь твердому телу приложить силы извне, то это вызывает ту или иную деформацию тела (растяжение, сдвиг, изгиб и пр.) или приводит к его разрушению. Различают упругую и пластическую деформации . Пределом упругости называют наибольшее напряжение, при котором еще не возникает остаточной (пластической) деформации. Одним из видов упругой деформации является высокоэластическая деформация. [c.572]

    Остаточные деформации сдвига возникают в результате вязкого и пластического формоизменения вещества. [c.12]

    При действии на граничный слой тангенциальных внешних сил, монотонно возрастающих от нуля, в граничном слое, как упругом теле, возникает упругая деформация сдвига, переходящая в пластическое течение. [c.71]

    Здесь уместно напомнить, что высокоэластические деформации развиваются на фоне необратимых деформаций и в определенной мере независимо от них (события как бы разыгрываются в разных областях релаксационного спектра). Соответственно, по мере развития -пластической деформации в режиме на первый взгляд установившегося течения происходит постепенное накопление обратимой деформации, масштаб которой до поры до времени остается того же порядка, что и у необратимой. Теперь термокинетические факторы, связанные уже не с напряжением сдвига Р, а непосредственно с градиентом скорости -у начинают приобретать роль, возрастающую по мере увеличения у. Это увеличение, с развиваемых в настоящей книге позиций, означает не что иное, как смещение стрелки действия в сторону меньших т. Соответственно, меняется [c.176]


    Совершенно иной механизм нагружения цепи преобладает в процессе пластической деформации полимеров при деформациях от 30 % до нескольких сотен процентов. В данном случае цепь будет рваться под действием сил трения, существуюш,их между цепями самой молекулы или ее цепями и другими морфологическими элементами при их динамическом сдвиге (гл. 5, разд. 5.2.5). Достигаемые напряжения вдоль оси цепи пропорциональны молекулярному или фибриллярному коэффициентам трения и скорости деформации е. Поэтому число критически нагруженных цепей будет отражать сильный рост коэффициента трения в зависимости от понижения температуры. Девис и др. [19] деформировали листы полиэтилена с высокой молекулярной массой на воздухе и регистрировали образование кислотных радикалов. Для истинной деформации 1п(///о), равной, например 1,1, что соответствует условной деформации 200 %, концентрация кислотных радикалов возрастает от 5-10 см при 294 К до 10 СМ при 160 К. Скорость накопления радикалов [Н]/й 1п(///о) имеет две области переходов одну при температурах 180—200 К и другую — начиная с 250 К и выше. [c.204]

    Крупномасштабное пластическое деформирование, связанное с вынужденной эластичностью, вполне естественно вызывает деформацию сдвига и растяжения молекулярных клубков. Свойства молекулярных цепей в растворе при сдвиге или растяжении этих цепей, были рассмотрены в разд. 5.2.5 (гл. 5). Там утверждалось, что разрывы цепей происходят в том случае, если скорости деформации достаточно велики (обычно выше 600 с- ). [c.305]

    В большинстве случаев целью уплотнения является получение агломерата, но иногда оно необходимо для повышения эффективности последующих процессов, например плавления. Уплотнение возникает при приложении внешнего усилия. Эти усилия передаются внутрь системы через контакты между частицами. Благодаря процессам эластической и пластической деформации (деформации сдвига и местных разрушений) число контактов возрастает, и появляются силы, удерживающие частицы вместе. Этот процесс уже рассматривался в разделе, посвященном агломерации. Силы, приложенные извне, приводят к появлению поля внутренних напряжений, которые в свою очередь определяют поведение уплотняемого материала. [c.237]

    С другой стороны, появление в металле очень большого числа различно ориентированных дислокаций также приводит к повышению прочности, так как при этом кристаллическая структура металла сильно искажается и перемещение дислокаций затрудняется. В этом состоит объяснение явления наклепа — упрочнения металла под действием пластической деформации. При нагревании сильно деформированного металла искажения его структуры, вызванные сдвигами, постепенно снимаются — металл возвращается в структурно более устойчивое состояние его пластичность возрастает, а твердость и прочность снижаются. [c.325]

    Коэффициент Ё, называемый модулем упругости, характеризует жесткость теда. При напряжениях, превышающих так называемый предел упругости Ри (стр. 260), пропорциональность нарушается происходит либо разрушение структуры, характерное для хрупких тел, предел прочности которых Рт близок к пределу упругости, либо возникают остаточные (пластические) деформации, не исчезающие после снятия нагрузки. Те-л-а, обнаруживающие остаточную деформацию при напряжениях, превышающих предел упругости, называются пластичными телами. Одним из видов остаточной деформации является течение, характерное для вязких жидкостей, при котором величина деформации непрерывно увеличивается при постоянно действующем напряжении. Вязким называется тело, изменяющее форму при любом, сколь угодно малом напряжении (Рй = 0). Идеально вязкие тела — жидкости — подчиняются закону Ньютона, согласно которому градиент скорости сдвига или, иначе говоря, скорость относительной деформации сдвига пропорциональна приложенному напряжению [c.255]

    Предел упругости Р , являющийся также пределом текучести, определяется как величина напряжения сдвига, при которой кривая е—I без течения (рис. 107) переходит в кривую с течением (рис. 108). Независимым критерием правильности выбора является инвариантность величины Г] , вычисленной по (5) для разных значений Р. При снятии нагрузки (р = 0 при t = il) система не возвращается к исходному состоянию. Конечное состояние отличается от начального на величину остаточной пластической деформации еь Из графика следует, что отношение е к продолжительности действия нагрузки fl равно отношению разностей в уравнении (5), а следовательно  [c.260]

    В процессе правки на многовалковых правильных машинах заготовка подвергается знакопеременному упругопластическому изгибу. В этом случае степень пластических деформаций в заготовке может быть значительно больше, чем при однократном изгибе. Процесс правки заготовок растяжением также связан с возникновением остаточных деформаций и напряжений. Процесс очистки хотя и не связан с изменением формы заготовок, но он также сопровождается возникновением остаточных деформаций и напряжений. Например, в процессе дробеструйной очистки поверхностные слои заготовок подвергаются локальному динамическому воздействию дроби, вызывающей на поверхностных слоях заготовок пластические деформации. Указанный факт является одной из причин повышенной скорости коррозии некоторых сталей в начальный момент коррозионных испытаний. При очистке абразивами и металлическими щетками тонкие поверхностные слои также получают пластические деформации сдвига. Однако, в силу того, что эти слои очень тонкие, то влиянием их на сопротивляемость механокоррозионному разрущению, видимо, можно пренебречь. Химическая очистка способствует наводороживанию поверхностного слоя проката [10]. Тепловая очистка основана на нагреве заготовок до температур 150-200°С с последующей механической очисткой. Если процесс тепловой очистки происходит в результате локального нагрева, то в отдельных зонах возможно появление остаточных деформаций. Процесс механической резки основан на создании в металле деформаций сдвига. В силу того, что между ножами имеется зазор, в зоне резания металл подвергается упругопластическому изгибу. В большинстве случаев после резки производят обработку кромок под сварку. В результате этого слой металла, в котором возникли деформации сдвига, в основном, удаляется. Тем не менее участки, подверженные изгибу, остаются. Процесс гибки и калибровки обечаек аналогичен процессу правки проката упруго- [c.51]


    Параметры т и 7, описывающие пластическую деформацию сдвига в монокристалле, могут быть связаны с макроскопическими параметрами, например параметрами, описывающими пластическую деформацию одноосного растяжения образца папря-жени .м о и деформацией е. Величина касательного напряжения на площадке 5 под. углом 0 к оси растяжения равна т (0) = = О.Б5з1п й достигает мак значения = 0.5а [c.45]

    Далее кратко рассмотрим основные механизмы образования микротрещин, которые можно подразделить на дислокационные, диффузионные и в результате межзерен-ного сдвига. Дислокационные механизмы могут быть разделены на три группы. К первой группе относятся модели (Зинера, Стро, Коттерелла, Гилмана и др.), связывающие инициированные микротрещины со скоплением дислокаций в плоскостях скольжения. Эти скопления возникают в результате остановки движущихся дислокаций в различных барьерах, которыми являются границы зерен с большими углами разориентировки, включения, поля напряжений. Вторая группа моделей предполагает образование микротрещин в результате скопления дислокаций в окрестностях пересечения систем элементарных актов пластической деформации путем скольжения и двойникования (модель Коттерелла). В соответствии с концепциями моделей третьей группы микротрещины инициируются в результате взаимодействия дефектов кристаллической решетки при пластическом деформировании. Эта группа -барьерные механизмы, описывающие процесс развития трещин в результате объединения цепочек вакансий в движущихся дислокациях со ступенькой пересечение малоугловых границ аннигиляции дислокаций в близко расположенных плоскостях скольжения возникновения поля растягивающих напряжений от двух дислокационных скоплений противоположного знака. [c.86]

    Об этом много написано, и мы ограничимся схемой рис. XV. 1. На (3, Г — диаграмме жидкое (аморфное) и кристаллическое состояние разделены одним или несколькими промежуточными состояниями, различающимися друг от друга уровнем и характером порядка и лишь в более редких случаях (пластические кристаллы) уровнем агрегатности, сводимым ме к тому же порядку, но проявляющимся в механических свойствах (нормальные кристаллы должны быть хрупкими, а не пластичными, впрочем, мы уже упоминали, что они тоже способны претерпевать пластическую деформацию сдвига). [c.349]

    В кольцевой струе полимерного расплава наряду с обычными пластическими деформациями сдвига существуют и обратимые высокоэластические деформации растял<ения, развивающиеся как во время движения струи в зазоре матрицы, так и в процессе последующей продольной вытяжки. [c.326]

    Следовательно, элемент испытьшает трехосное равномерное сжатие, сопровождающееся упругими деформащ1Ями. Это следует из первой аксиомы реологии, согласно которой при изотротном сжатии все материальные шстемы ведут себя как идеально упругие тела, а именно, увеличивается плотность и соответственно ) еньшаются размеры при сохранении формы тела. Опыты, проводимые с пеной в барокамере при постепенном повышении давления или его стравливании, подтверждают, что пена не разрушается и не течет, лишь пропорционально меняется ее объем. Другими словами, деформации пенного слоя, при которых возникают относительные смещения ячеек, возможны лишь под действием касательных напряжений. Следовательно, при движении по поверхности без трения одинакового по высоте пенного слоя пластические деформации сдвига возникнуть не могут и геометрическая форма объема пены будет неизменной. [c.23]

    Источниками дислокаций (до деформации) являются сегрегация примесей напряжение и дислокационные центры кристаллизации срастание раз.тично ориентированных зерен и субзерен межзеренное общение и др. В отоженном металле число дислокаций достигает Ю см . Пластическая деформация способствует увеличению плотности дислокаций на 5-6 порядков, движению дислокаций и их групп, включая границы зерен. В результате они приобретают сложную форму, увеличивается их длина, общая энергия и сопротивление скольжению. Выход дислокации на поверхность кристалла приводит к сдвигу на одно межатомное расстояние. Следовательно, суммарный сдвиг при начальной плотности дислокаций N0 = Ю5/см2 составит = Ю - Ю - 10- = 10- что соот- [c.78]

    Происходят по механизму вязкого или хрупкого разрушения. Заметим, что в кислых средах, вызывающих общую коррозию, часто отмечается заметное снижение относительного сужения, хотя равномерное удлинение может быть таким же, как и при испытаниях на воздухе. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразова-ние) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой (рис. 2.7). В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва (рис. 2.6). Часто имеет место сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу (рис. 2.6,г). Особенностью разрушений при кор-розионно-механическом воздействии является наличие на из гомах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др. [c.71]

    Позднее эта точка зрения была распространена и на металлы, которые не образуют интерметаллидных соединений, но для которых характерно изменение фаз йли образование сегрегаций легирующих элементов или примесей в вершине трещины в ходе пластической деформации вследствие градиента состава здесь образуются гальванические элементы. Варианты этой теории содержат предположение, что трещины образуются механически и что электрохимическое растворение необходимо только для периодического сдвига барьеров при росте трещины [25]. Но хрупкое разрушение пластичного металла вряд ли возможно в вершине трещины. Кроме того, было показано, что удаление раствора Fe la из трещины, образованной в напряженном монокристалле uaAu, сопровождается релаксацией напряжений в кристалле и —. .в результате —немедленным прекращением растрескивания, сменяющимся пластической деформацией [26]. Аналогичным образом, трещина, распространяющаяся в напряженной нержавеющей стали 18-8, погруженной в кипящий раствор Mg lj, останавли- [c.138]

    Макк [35] изучал механизм деформации битумных дорожных смесей под действием псстоянных нагрузок. Он пришел к заключению, что механические характеристики зависят от характера нагрузок, действующих на дорожное покрытие. Он указывает, что деформация битумных дорожных покрытий состоит из мгновенной и обратимой эластической деформации, за которой следует пластическая деформация, сопровождающаяся твердением. Процесс твердения зависит от вязкости и ускоряется с возрастанием сжимающего давления и продолжительности приложения нагрузок до их определенной величины. Макк считает, что дорожное покрытие в. состоянии отдыха обладает мшшмальжтй потенциальной энергией. Под действием нагрузок частицы, находящиеся в упорядоченном состоянии, редко покидают свое место, в то время как другие частицы перемещаются из состояния неупорядоченного в упорядоченное.. При максимальном значении коэффициента пластического сдвига число частиц в неупорядоченном состоянии приближается к нулю. Изменение свободной энергии активации перехода из неупорядочен-, ного в упорядоченное состояние и масса частиц также максимальны в этой точке. Процесс твердения битумного покрытия можно сравнить со слиянием неупорядоченных частиц в частицы большей, массы. [c.149]

    Лучшее представление о поведении смазок в рабочих условиях дают структурно-механические свойства предельное напряжение сдвига, или предел текучести, — усилие, которое нужно приложить, чтобы вызвать пластическую деформацию смазки, ее текучесть. Предельное напряжение сднига зависит от температуры и при повышенных температурах более точно характеризует верхний предел работоспособности смазок, чем температура каплепадения. [c.376]

    В этом разделе была рассмотрена морфология поверхностей разрушения, позволяющая выявить виды локального разделения материала. Были определены микроскопические размеры структурных элементов, которые разрываются или разделяются молекулярных нитей, фибрилл или молекулярных клубков, ребер, кристаллических ламелл, сферолитов. Однако, когда говорят об их основных свойствах, используют макроскопические термины разрыв, деформация сдвига, пределы пластического деформирования, сопротивление материала распространению трещины. Не было дано никаких молекулярных критериев разделения материала. Такие критерии существуют для отдельных молекул температура термической деградации и напряжение или деформация, при которых происходит разрыв цепи. По-видимому, следует упомянуть критическую роль температуры при переходе к быстрому росту трещины [30, 50, 184—186, 197] и постоянное значение локальной деформации ву в направлении вытягивания материала (рис. 9.31), которая оказалась независимой от длины трещины и равной - 60 % на вершине обычной трещины в пленке ПЭТФ, ориентированной в двух направлениях [209]. Следует также упомянуть критическую концентрацию концевых цепных групп определенную путем спектроскопических ИК-исследоваиий на микроскопе ориентированной пленки ПП в окрестности области, содержащей обычную трещину (рис. 9.32), и поверхности разрушения блока ПЭ [210]. Оба материала вязкие и прочные. По распределению напряжения перед трещиной в пленке ПП можно рассчитать параметры Кс = (У г)Уш = ,,г 2 МН/м" и G = 30 17 кДж/м [11]. Эти значения в сочетании с данными табл. 9.2 довольно убедительно свидетельствуют о том, что разрыв цепи сопровождается сильным пластическим деформированием. Возможная роль разрыва цепи в процессе применения сильной ориентирующей деформации или после него была детально рассмотрена в гл. 8. [c.403]


Смотреть страницы где упоминается термин Пластическая деформация сдвига: [c.22]    [c.162]    [c.39]    [c.71]    [c.80]    [c.89]    [c.13]    [c.19]    [c.699]    [c.147]    [c.77]    [c.214]    [c.39]    [c.80]    [c.89]    [c.391]    [c.40]    [c.177]    [c.254]    [c.215]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.20 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Деформация пластическая

Деформация сдвига

Пластическая



© 2025 chem21.info Реклама на сайте