Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полная электронная плотность на атом

    Химическая связь, как показали в свое время на примере молекулы водорода Гейтлер и Лондон, образуется за счет увеличения (но сравнению с невзаимодействующими атомами водорода, находянщмися на том же расстоянии, что и в молекуле) электронной плотности между атомами. Это увеличение в расчетах по методу МО учитывается с помощью так называемых интегралов перекрывания. Электроны в основном состоянии молекулы занимают орбитали с наи-низшей энергией. На каждой орбитали может находиться по два электрона с нротивополоншыми спинами. Здесь к этой общеизвестной школьной модели добавляется одна тонкость. Вследствие электростатического взаимодействия электроны отталкиваются, в результате чего даже два электрона, находящиеся на одной и той же молекулярной орбитали, имеют тенденцию двигаться по возможности на большем удалении друг от друга. Решение уравнения Шредингера для атома водорода облегчается тем, что единственный электрон 1 этого атома обладает сферической симметрией. В атоме гелия атомная орбиталь вследствие взаимного отталкивания двух электронов 1 уже не обладает сферической симметрией, и с этим связаны трудности в расчетах распределения электронной плотности в атоме гелия. Энергия корреляции движения электронов может достигать примерно 20% общей электронной энергии молекулы и в расчетах учитывается с помощью интегралов электрошого отталкивания . Кроме того, в молекуле существует еще конфигурационное взаимодействие — взаимодействие между самими молекулярными орбиталями. Волновая функция, учитывающая конфигурационное взаимодействие, аналогична по своей записи уравнению для волновой функции, приведенному в 1 этой главы, однако вместо <рг волновых функций атомных орбиталей в ее выражение входят Ф, — волновые функции атомных или молекулярных конфигураций . Под конфигурацией понимается способ распределения электронов по атомным (в атоме) или молекулярным орбиталям (в молекуле). Поясним это понятие на простом примере атома лития, имеющего 1 и электрона. В зависимости от того, находится ли атом в основном или в возбужденном состоянии, электроны по-разному располагаются на двух орбиталях 1 22х и 1 2 2. Таким образом, полная волновая функция, учитывающая конфигурационное взаимодействие, для атома лития будет иметь вид [c.91]


    В современных квантовохимических расчетах обычно апеллируют к картам электронной плотности при анализе распределения электронного заряда в молекуле. Если тем не менее вычислить, имея такие карты, заряды на атомах, то целесообразно каким-либо образо.м определить область пространства, отпоенную к данному атому, и проинтегрировать полную электронную плотность по объему этой области. Чаще всего эта область берется в виде сферы, радиус которой определяется, например, по минимуму электронной плотности на линии связи или из каких-либо других соображений. [c.163]

    Число электронов, смешанных от атома данного элемента или к атому данного элемента в соединении, называется степенью окисления. Положительная степень окисления обозначает число электронов, которое смещается от данного атома, а отрицательная степень окисления — число электронов, которое смещается к данному атому. Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений служат молекулы, состоящие из одинаковых атомов (N2, Hz, I2). Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно. В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому  [c.178]

    Атом-атомные и связь-связевые поляризуемости. Изменение кулоновского интеграла на атоме ы отразится на величине полной энергии так же, как возмущение второго порядка, так как изменение электронной плотности на атоме 1 повлечет за собой перераспределение электронных плотностей на других атомах. Степень такого перераспределения характеризует величины атом-атомных поляризуемостей  [c.239]

    Различие в электроотрицательности взаимодействующих атомов приводит к образованию полярной связи вследствие смещения электронной плотности связующего электронного облака к более электроотрицательному атому. Если же различие между атомами очень велико, то можно говорить о полном переходе электронной пары к более электроотрицательному атому. Упрощенно это сводится к переходу электрона от одного атома к другому, например [c.80]

    Избыток НКОг разрушается добавлением небольших порций мочевины до прекращения выделения пузырьков газа. Положительный заряд в солях диазония не локализован у одного атома азота вследствие сдвига электронной плотности от атома азота, имеющего неподеленную электронную пару, к атому азота, несущему формально полный положительный заряд  [c.116]


    Причины, обусловливающие наличие отрицательного индуктивного эффекта той или иной группы, могут быть различными. Наибольший —/-эффект имеют группы, у которых на атоме, непосредственно связанном с атомом углерода субстрата, имеется полный положительный заряд. К ним относится, например, нитрогруппа NO2, в которой, в соответствии с правилом октета, азот может быть только четырехковалентным с полным положительным зарядом, в то время как избыточная электронная плотность равномерно распределяется на обоих атомах кислорода. Несколько меньшим —/-эффектом обладают группы, у которых атом, непосредственно связанный с атакуемым атомом углерода субстрата, одновременно связан кратной связью с каким-либо более электроотрицательным элементом, в результате чего на атоме углерода возникает частичный положительный за])яд к ним относятся группы OOR, N, OR, СНО. [c.114]

    При полном смещении межъядерной электронной плотности к атому с большей электроотрицательностью длина диполя становится равной длине связи l=d), и атомы превращаются в положительно и отрицательно заряженные ионы, между которыми действуют силы электростатического притяжения. Такую связь называют ионной. Степень полярности или ионности связи t определяется отношением Hd, крайние значения которого О и 1 соответствуют чисто ковалентной и чисто ионной связям. В остальных случаях эта величина имеет промежуточные значения, например, для молекулы НС1 d=0,128 нм и /=0,0225 нм, откуда r=//d=0,0225/0,1280=0,18 или точнее 0,20 (при учете влия- [c.120]

    Полного, т. е. 100%-ного, смеш,ения электронной плотности на атом с большей ЭО не происходит даже в наиболее ионных соединениях, которыми являются бинарные соединения ш,елочных металлов с галогенами. Это объясняется как волновыми свойствами электронов, так и влиянием зарядов образовавшихся ионов на электронные оболочки друг друга, т. е. их взаимной поляризацией. Принято считать связь ионной, если АЭ0>1,9. Значения [г ионных молекул лежат в пределах 1,33-3,66-10 Кл-м. [c.121]

    Ионная, или электростатическая связь (рис. 3.2, в) образуется в случае полного переноса связывающих электронов к более электроотрицательному атому, который становится в результате этого отрицательным ионом - анионом с зарядом, равным количеству перенесенных электронов. Менее электроотрицательный атом теряет соответствующее количество электронов и становится положительным ионом - катионом. По существу, это предельный случай полярной ковалентной связи, который может реализоваться лишь при взаимодействии атомов, очень сильно отличающихся по электроотрицательности, например в 1лГ, СаРг, ВаО. Однако, строго говоря, даже в таких соединениях электроны не полностью переходят с катионов на анионы, а некоторая часть электронной плотности остается делокализованной между ними. Такую связь правильнее рассматривать как преимущественно ионную с малой примесью ковалентности. Ионная связь имеет электростатическую природу это значит, что она не имеет определенного направления в пространстве и ионные соединения не состоят из отдельных молекул, а образуют трехмерные пространственные кристаллические структуры, в которых соотношение между количеством катионов и анионов определяется их зарядами, а взаимное расположение - соотношением радиусов. Энергия ионной связи может быть легко рассчитана по закону Кулона, если известны заряды и радиусы ионов и тип кристаллической решетки. Подробнее об ионных кристаллах - см. разд. 6.3. [c.45]

    В связи с тем, что электронная -оболочка кремния ие заполнена, распределение электронной плотности в гидроксильных группах поверхности силикагеля таково, что в них отрицательный заряд сильно смещен к атому кислорода, а атом водорода частично протонизирован, образуя протонный кислотный центр [339—367]. Это обеспечивает специфическое взаимодействие поверхности кремнезема со связями или звеньями молекул, обладающих сосредоточенной на периферии электронной плотностью [3391. Поэтому естественно, что при частичном или полном замещении гидроксильных групп кремнезема атомами фтора или органическими радикалами, благодаря выключению из адсорбционного процесса всех или части гидроксилов, наблюдается уменьшение адсорбции веществ, у которых в адсорбционном взаимодействии играет роль донорно-акцепторная компонента. [c.168]

    При качественном рассмотрении ВС можно считать, что изменение полной энергии ММВ при электронном возбуждении определяется перераспределением электронной плотности в молекуле, на которой локализовано возбуждение. Например, в комплексах, приведенных в табл, 2 и 3, акцептор протона содержит карбонильную группу. Верхняя заполненная молекулярная орбиталь в таких молекулах, благодаря наличию неподеленной лары электронов на атоме кислорода, относится к /г-типу. У молекул, имеющих один атом кислорода, и-орбиталь существенно локализована. При переходе п-электрона на 1г -орбиталь электронная плотность на атоме кислорода существенно уменьшается. Протоноакцепторная способность атома кислорода понижается, что вызывает ослабление ВС, В молекулах, имеющих га-орбиталь, делокализованную на [c.33]


    Рассмотрим на примере анилина, каким образом электронные влияния в ароматическом ядре передаются преимущественно в орто- и пара-положения. Аминогруппа проявляет в основном +М-эф-фект. Это приводит к тому, что электронная плотность свободной электронной пары атома азота частично смещается к ароматическому ядру. Полное смещение означало бы образование двойной связи N = 0 за счет свободной электронной пары азота. Углеродный атом С] приобрел бы в таком случае заполненный октет за счет имеющихся четырех связей тем самым оказалось бы нарушенным круговое сопряжение в ароматическом ядре. Шестерку я-электронов пришлось бы размещать в локализованных, закрепленных двойных связях. Однако, не нарушая правил валентности, можно представить себе создание только двух двойных связей в кольце, а одна электронная пара обязательно должна оставаться свободной и принадлежать одному из атомов углерода бензольного ядра. [c.311]

    В некоторых случаях таким путем удается сразу выявить кристаллическую структуру. Если молекула содержит только один тяжелый атом, то почти все фазы будут определяться именно этим атомом. Если, кроме того, этот тяжелый атом находится в частном положении, так что все три его координаты определяются симметрией, то можно прямо найти вероятные знаки всех структурных факторов. Эти знаки непосредственно используются для предварительного построения рядов электронной плотности, из которых устанавливают положения других атомов. Включением этих других атомов в следующий набор вычисленных структурных факторов можно проверить, не окажутся ли некоторые из фаз на самом деле противоположными тем, которые были найдены при рассмотрении только тяжелого атома. Именно таким способом проводилось одно из первых полных определений структуры сложной органической молекулы — фталоцианина платины [1]. [c.180]

    В последнее время, в связи с усовершенствованием вычислительной техники и методики, расчеты с расширенными базисами постепенно становятся все более доступными. Но следует особо подчеркнуть необходимость сбалансированности базиса. Это значит, что базисные наборы для каждого атома должны иметь одинаковую полноту. Так, например, для,молекулы РО базисы зрс1)р4-(5рё)о и (зр)р- - зр)о будут сбалансированными (при этом первый — расширенный, а второй — минимальный), тогда как базисы (5р(1)р - - зр)о и (5/5)р+ (5рс )о —несбалансированы. В последних двух случаях наблюдается искусственное перераспределение электронной плотности к атому, представленному более полным образом- [c.184]

    По этим причинам ВНз, образовавшийся в растворе тетра-гидрофурана, электрофильно атакует атомом бора крайний атом углерода в алкене, на котором имеется избыточная электронная плотность. В качестве интермедиата образуется биполярный продукт (23), в котором положительный заряд возникает на вторичном, а не на первичном атоме углерода, что, как уже обсуждалось ранее, энергетически более выгодно. Реакция завершается миграцией гидрид-иона от несущего полный отрн- [c.24]

    Существенное отличие групп NO2 и N от Hal, ОН и NHa заключается в знаке мезомерного эффекта. Ни атом азота нит-рогруппы, ни атом углерода группы N, которыми эти группы связаны с атакуемым атомом углерода, не имеют неподеленных нар электронов, обусловливающих появление -f/Vi-эффекта, но несмотря на это они прочно связаны с атомом углерода субстрата. В данном случае повышение прочности связи уходящей группы X с субстратом заключается в следующем. С одной стороны, вследствие высокой поляризуемости кратных связей, на атомах кислорода в группе NO2 и на атоме азота в группе GN сосредоточивается значительная избыточная электронная плотность. С другой стороны, на атоме азота в нитрогруппе имеется полный положительный заряд, а на атоме углерода в группе N — значительный дефицит электронной плотности, что вызывает поляризацию соседних связей С—Н и повышает склонность атомов водорода к отщеплению н виде протонов, причем [c.119]

    Различие в электроотрицательности взаимодействующих атомов приводит к образованию полярной связи вследствие смещения электронной плотности молекулярной орбитали к бо.иее электроотрицательному атому. Если же различие между атомами очень велико, то можно говорить о полном переходе электронной пары к более электроотрицательному атому. Упрощенно это сводится к переходу электрона от одного атома к другому, например при образовании хлорида натрия НаС1. Взаимодействие атомов натрия и хлора в соответствии с теорией ионной связи сопровождается переносом электрона от натрия к хлору. Нейтральный атом натрия, теряя электрон, превращается в положительно заряженный ион (катион), а атом хлора, приобретая электрон, — в отрицательно заряженный нон (анион). Известно, что на внешнем уровне щелочные метаялы [c.71]

    Метил-катион и другие карбкатиониые частицы нмеют атом с б электронами на внешнем уровне они легко вступают в реакцию с частнца1ш, обладающими избытком электронной плотности в виде полного или частичного отрицательного заряда, либо имеюигими свободную электронную пару. Такие частицы называют н у к л е о-ф и льны м и ( любящими ядра ). Например  [c.228]

    Причину различной нуклеофильности С- и О-атомов. видимо, следует нскчц, и различной сольватации в обоих растворителях, В протонных растворите, л.х атом кислорода как центр наибольшей электронной плотности сильно сольват и рован благодаря образованию водородных связей н как следствие его нук 1 1.. фильная реакционная способность сильно снижена (см. также разд. Г,2.2 1). При этом реакция протекает преимущественно по менее сольватнрованному и вместе с тем более нуклеофильному атому углерода. В апротонных поляртд . растворителях, напротив, кислородный атом фенолята менее сольватирован п результате его основные свойства при взаимодействии с алкилирующим ап ц том более полно проявляются, так что в этом случае преимущественно пр<п кает О-замещение. [c.252]

    Атомы или молекулы (или их ионы), имеющие лишь один электрон, в смысле решения уравнения Шрёдингера, очевидно, относятся к особой категории, поскольку орбитальные волновые функции являются одновременно и полными электронными волновыми функциями. Для таких систем уравнение ШрёдиН гера можно решить точно. Несмотря на то что для химиков пО добные одноэлектронные системы сами по себе не представляют большого интереса, они важны потому, что орбитали многоэлектронных систем во многом подобны орбиталям одноэлект-ронных. Поэтому целесообразно начать изучение атомных орбиталей с рассмотрения точно решаемой задачи, а именно с на хождения волновых функций для электрона в атоме водорода. Задачу решения уравнения Шрёдингера для электронов в ато ме или молекуле можно упростить путем разумного выбора координатной системы, определяющей положение электронов относительно ядер. Для изолированного атома, не подверженного влиянию внешних полей, все направления в пространстве эквивалентны. Можно ожидать, что при фиксированном раС стоянии г от ядра, т. е. на поверхности сферы радиуса г, электронная плотность однородна. Однако для различных г элект ронная плотность будет различна. Поэтому разумно выбрать не обычную декартову систему координат х, у, г, а систему, в которой одной из координат является г. Такая координатная [c.28]

    Все три карты относятся к молекуле бензола На первой карте (рис 3 13), соответствующей плоскости молекулы, демонстрируется действие на ядро атома водорода отдельных участков электронной плотности, распределенной вдоль этой плоскости Хорошо видно различие в действии электронно-ядерных сил, обусловленное заядериой областью, расположенной вне связи Н-С, н межьядерной В первом случае электронное притяжение действует на ядро Н в том же направлении, что и кулоновское отталкивание этого ядра от всех остальных Можно сказать, что эта часть полного электронного облака оказывает разрыхляющее действие Аналогичную роль играет электронное облако на Н-С связи по отношению к атому углерода (см рис 3 14) Связывающая сила, удержи- [c.128]

    Атом лития, следующий за гелием в периодической системе, содержит три электрона. По принципу минимума энергии два из них расположатся, как и в атоме гелия, на 18-орбитали. Третий электрон в соответствии с принципом Паули должен располагаться на АО с п = 2. Однако таких возможностей две - 2з- и 2/>-орбитали, и электрон будет иметь меньшую энергию на той из них, где он будет испытывать действие более высокого эффективного заряда. Рассмотрим с этой точки зрения кривые распределения электронной плотности в атоме лития в зависимости от расстояния от ядра (рис. 2.11). Из этих кривых хорошо видно, что замкнутый слой 1з расположен гораздо ближе к ядру, чем основная плотность 2з- или 2/>-электрона. Однако внутренний максимум 2з-электрона практически полностью проникает в 1й-электронную плотность в близкой к ядру области, и определенная часть его плотности чувствует на себе почти полный зяряд ядра 2 = +3. Единственный максимум 2/>-электрона далек от ядра, а в области сосредоточения 1й-элек-тронов находится лишь незначительная его часть. Следовательно, в атоме лития электрон на 2з-орбитали испытывает на себе действие несколько более высокого эффективного заряда, он несколько хуже экранирован от ядра 1й-электронами, чем электрон на 2/>-орбитали, и прочнее связан с ядром. Соответственно, в основном состоянии атом лития будет иметь электронную конфигурацию 18 28 а конфигурация 1з 2р отвечает возбужденному состоянию. [c.35]

    Чисто ионной связью называется химически связанное состояние атомов, при котором устойчивое электронное окружение достигается путем полного перехода общей электронной плотности к атому более электроотрицательного алёмента. [c.138]

    Вторая реакция подчиняется обычным закономерностям в том смысле, что атом водорода у третичного атома углерода реагирует быстрее, чем у вторичного то же самое, несомненпо, относится и к первой реакции, поскольку кислород в этом случае реагирует как свободный радикал. На это указывает тот факт, что изопентан является значительно более эффективным ингибитором окисления ацетальдегида, чем я-пентан. Механизм ингибирования здесь сводится к отрыву атома водорода от углеводорода с образованием радикала, не способного продолжать цепь в условиях опыта. Согласно Райсу [137], относительные вероятности отрыва алкильными радикалами ато ла водорода от третичного, вторичного и первичного атомов углерода относятся приблизительно как 33 3 1, поэтому вполне вероятно, что перекиси будут образовываться в заметных количествах в различных местах молекулы, причем их образование у третичных атомов углерода будет происходить значительно легче, чем у вторичных, а у вторичных легче, чем у первичных. Поэтому полная скорость окисления, по-видимому, зависит от скорости третьей реакции, т. е. от стабильности образовавшейся перекиси. Хиншельвуд [131, 132] отметил, что все заместители, повышающие скорость реакции, являются электроноакцепторными группами, в то время как метильная группа, увеличивающая стабильность перекиси, является электронодонорпой. Из этого следует, что повышение электронной плотности увеличивает прочность связи кислород—кислород в перекиси. Эти факты согласуются с представлениями Уолша о том, что связь между сильно электроотрицательными элементами должна упрочняться электронодонорными группами [138]. [c.181]

    Для способности ацидолигандов и нейтральных лигандов к оттягиванию или отдаче электронной плотности в рамках аддитивной зависимости сдвига центрального атома от лиганда (см. разд. 2.1) можно найти также и количественную характеристику. Некоторые соответствующие инкременты представлены в табл. 3.3. Более полные наборы приведены в ([4]. Степень соответствия рассчитанных и экспериментальных значений Pt4f для соединении Pt показана в табл. 3.9. Справедливость аддитивной схемы для химических сдвигов центрального атома, несмотря на четкое проявление взаимного влияния лигандов в рентгеноэлектронных спектрах (см. разд. 2.1, 3.3 и 3.5), свидетельствует о том, что взаимная конкуренция лигандов за электронную плотность центрального атома сводится в основном к перекачке электронной плотности через центральный атом. Эта перекачка происходит таким образом, что уменьшение способности к оттягиванию электронной плотности у одного лиганда компенсируется увеличением этой способности у другого. Например, значе -ние Sn3iI6/a в 5пС 12(СНз)2 (см. табл. 2.10) равно 493, 21 эВ, а среднее ее значение для Sn U и 5п(СНз)4 составляет 493,15 эВ, т. е. практически совпадает со значением для 5пС12(СНз)2. Следовательно, формально группам СНз и I можно приписать постоянное значение способности к оттягиванию электронной плотности (аддитивная схема), хотя в дейст- [c.89]

    Нами были высказаны основные положения о механизме реакади хлорметилирования. Исходя из наличия двух электроотрицательных групп в молекуле хлорэфира донорно-акцептор-ная связь с хлоридом металла может осуществляться через координацию с атомом кислорода или хлора. По-видимому, электронная плотность атома металла в молекуле акцептора определит вероятность преобладания координации через атомы кислорода или хлора [42, 43]. Возможно, за счет отсутствия полного насыщения при образовании координационной связи О—Ме, благодаря значительной величине заряда на атоме кислорода, а также координации С1—Ме, атом кислорода может. удойлетворять свою донорную силу образованием связи с водородом ароматического кольца, в результате чего связь С—О каталитическом комплексе ослабнет, что приведет к ее разрыву с образованием хлорметильного производного. [c.113]

    Современные усовершенствования методов рентгеноструктурных исследований позволяют, в благоприятных случаях, определять положение атомов водорода на картах электронной плотности. Так, в результате определения полной структуры кристаллической салициловой кислоты ( o hran, 1953) были обнаружены димеры, в которых водородные атомы карбоксильных групп находятся практически на одной прямой с соседними атомами кислорода, но водородный атом гидроксильной группы расположен заметно в стороне от линии, соединяющей соседние атомы кислорода (XI). [c.218]

    Метил-катион и другие карбокатионные частицы имеют атом с 6 электронами на внещнем уровне они легко вступают в реакцию с частицами, обладающими избытком электронной плотности в виде полного или частичного отрицательного заряда либо шу1сющими сзободлую злектроккую пару. Такие частицы называют нуклеофильными ( любящими ядра ). Например  [c.278]


Смотреть страницы где упоминается термин Полная электронная плотность на атом: [c.252]    [c.92]    [c.43]    [c.195]    [c.92]    [c.181]    [c.43]    [c.37]    [c.185]    [c.46]    [c.22]    [c.22]    [c.308]    [c.24]    [c.91]    [c.277]    [c.88]   
Органическая химия Том1 (2004) -- [ c.77 , c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Плотность электронов

Электрон в атомах

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны



© 2025 chem21.info Реклама на сайте