Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностный толщина

    Типичные изотермы смачивающих пленок боды изображены на рис. 1.6, где по оси абсцисс отложено расклинивающее давление пленки П, а по оси ординат — ее толщина /г. Кривая 1 относится к пленке воды на гидрофильной, полностью смачиваемой поверхности, а кривая 3 отвечает неполному смачиванию, когда объемная жидкость образует с пленкой конечный краевой угол. Кривая 2, в зависимости от площади под изотермой в области П<0, характеризует либо полное, либо неполное смачивание. Вид изотермы П(/1) определяется вкладом различных составляющих поверхностных сил молекулярных, [c.16]


    Иными словами, толщина реакционного слоя, а следовательно, реакционная предельная плотность тока и реакционное перенапряжение не зависят от скорости разме нивания раствора, что позволяет разграничить замедленность транспортировки и химического превращения. Независимость перенапряжения от природы электрода, состояния его поверхности, присутствия поверхностно-активных веществ указывает на замедленность гомогенного химического превращения. [c.327]

    Веретенным маслом 2 обычно смазывают цилиндры поршневых детандеров воздухоразделительных установок. Поэтому при рассмотрении безопасного предела чистоты поверхности следует исходить из данных по этому маслу. На основании проведенных исследований можно сделать вывод, что не детонируют и не способствуют распространению горения пленки индустриального масла толщиной менее 1,8 мкм (поверхностная концентрация 1,6 г/лl ). [c.78]

    В. Г. Левич получил количественные соотношения, связывающие толщину диффузионного подслоя и коэффициент массоотдачи в жидкой фазе с гидродинамическими характеристиками и физическими свойствами жидкостей, применительно к системам жидкость—твердая стенка и жидкость—газ. При этом в последнем случае причиной затухания пульсаций у свободной поверхности считается наличие поверхностного натяжения. [c.101]

    При увеличении скорости скольжения и качения уменьшается-толщина поверхностного слоя металла, подверженного пластическим, деформациям, так как увеличивается толщина образую-щихся пленок химических соединений. При уменьшении толщины деформированного слоя долговечность его возрастает, что приводит к уменьшению износа. [c.71]

    Увеличение температуры топлива также влияет на толщину и свойства образующихся поверхностных пленок. [c.71]

    Скорость движения образовавшейся пленки масла на внутренней поверхности нагнетательных трубопроводов в десятки раз меньше скорости воздушного (газового) потока. По этой причине в поверхностных слоях пленки масла под действием высокой температуры воздуха продолжаются окислительные процессы, приводящие к увеличению толщины нагаромасляных отложений. [c.295]

    Для пенетрационной модели это означает, что при намного большем среднем возрасте поверхностных элементов по сравнению со временем, необходимым дЛя реакции, неважно, каковы будут отдельные значения среднего времени жизни этих элементов. В пленочной теории тот же вывод свидетельствует о том, что, если толщина пленки намного больше, чем глубина, необходимая для уменьшения градиента концентраций на незначительную величину за счет реакции, действительная толщина пленки не имеет значения. [c.29]


    Если экспериментально найденные величины близки к рассчитанным при предположении полного перемешивания, все же вопрос еще не исчерпан, поскольку гипотеза полного перемешивания количественно точна только при очень высоких скоростях потока жидкости [26]. Если перемешивание неполно, либо отсутствует вообще, создается промежуточная обстановка, на которой следует остановиться более подробно. По теории обновления поверхности в то время, когда объем жидкости полностью перемешивается, слой жидкости, близкий к границе газ — жидкость, проходит место соединения одного конструкционного элемента с другим без перемешивания. Пусть ds — толщина этого поверхностного слоя. [c.109]

    На окисление топлива растворенным кислородом может существенно влиять соотношение площади поверхности контакта с газовой фазой и объема топлива. Это влияние обусловливается неравномерным распределением концентраций растворенных газов по высоте топлива в тонких слоях. В поверхностном слое топлива растворяется значительно больше газов, в том числе и кислорода, чем в аналогичных по толщине слоях, расположенных в остальном Объеме топлива. В связи с этим количество газов, поглощенных предварительно дегазированным топливом, сильно зависит от высоты его налива [61]. [c.51]

    Чтобы оценить по достоинству значение работ Н. П. Петрова, нужно учесть, что в то время работы Рейнольдса о сущности ламинарного и турбулентного течения жидкости были мало известны. Позже, проведя глубокий анализ движения вязкой жидкости в канале, образованном двумя поверхностями, находящимися в относительном движении, Рейнольдс показал, что шип может поддерживать нагрузку только при эксцентричном его положении. Свое приближенное уравнение ГТС, разработанное на основании уравнения механики вязкой жидкости Навье — Стокса, Рейнольдс вывел на основании следующих допущений гравитационными и инерционными силами можно пренебречь вязкость смазочной среды постоянна жидкость (смазка) несжимаема толщина пленки смазки мала по сравнению с другими размерами скольжение на границе жидкость— твердое тело отсутствует влиянием поверхностного на--тяжения можно пренебречь смазка является ньютоновской жидкостью. [c.229]

    Результаты этих расчетов представлены на рис. 6.10 (кривая /). Максимальные значения к близки по порядку величины к толщинам адсорбционных а-пленок воды на поверхности кварца при комнатной температуре [42]. При понижении температуры толщина пленок уменьшается, составляя л 1,5нм при —6°С. Вид температурной зависимости к(1) хорошо согласуется с полученной ранее в работе [315] температурной зависимостью толщины незамерзающих прослоек воды между поверхностью льда и частицами аэросила (кривая 2). Количественное сопоставление кривых / и 2 не имеет смысла, поскольку они относятся к различным системам в первом случае — к незамерзающим адсорбционным пленкам, граничащим с газом, и во втором — к незамерзающим прослойкам между льдом и твердой поверхностью частиц. Еще более высокие значения/г были получены для пленок воды на поверхности льда [308]. Их толщина составляет около 5,0 нм при —6°С, возрастая до 10,0 нм при повышении температуры до —1 °С. Таким образом, толщина незамерзающих слоев воды существенным образом зависит от того, в контакте с какими фазами они находятся, т. е. от природы поверхностных сил, энергии связи и способа ориентации молекул воды вблизи различных поверхностей. [c.115]

    Представим себе неоднородный (в направлении нормали к поверхности раздела) слой с поверхностью 5 между объемными фазами I и И (рис. ХУП, 1). Толщина этого слоя т невелика, так как разность молекулярных сил у поверхности раздела, вызывающая неоднородность поверхностного слоя, быстро падает с расстоянием от поверхности. Выберем толщины этого слоя т и по обе стороны поверхности раздела такими, чтобы за их пределами фазы I и И были бы вполне однородны. [c.460]

    У-13-4. Сопоставление пленочной модели и моделей поверхностного обновления. Из анализа уравнений (V, 145)—(V, 156) видно, что выражения, полученные на основе модели Данквертса, содержат, в отличие от полученных для пленочной модели, отношение У уЮ . Так как V то с помощью модели Данквертса устанавливается значительно большее повышение температуры за счет тепла абсорбции и реакции. Это является следствием того, что согласно моделям обновления поверхности глубина проницания, или пенетрации, тепла в жидкость во время экспозиции газу много больше глубины пенетрации растворенного газа из-за значительного превышения величины коэффициента температуропроводности у величины коэффициента молекулярной диффузии Од. Это означает, что в пленочной модели толщина пленки при передаче тепла должна быть больше толщины диффузионной пленки Для передачи вещества [c.141]

    Толщина пленки, мкм, и поверхностная концентрация, (цифры в скобках), при давлении кислорода, ЬЛн)хС-(кГ см ) [c.77]

    Наименее стойким является индустриальное масло, пленки которого толщиной 1,8 мкм уже способствуют распространению детонации. Пленке такой толщины соответствует поверхностная концентрация масла 1,6 г/м . Для масел П-28, КС-19 и КВ-28 минимальная толщина детонирующих пленок составит 2,5—3 мкм. Наиболее стойким из испытанных оказалось масло КС-28, минимальная толщина пленки для которого 6 мкм. [c.77]

    Толщина незамерзающих прослоек к зависит от температуры, внешнего давления р и расклинивающего давления П. В работах [32, 318] определен качественный ход изотермы к(р), исходя из зависимости температуры фазового равновесия от давления на закрытую грань кристалла [319], и ход изотермы /г(П)—на основе теории поверхностных сил [42]. Равновесная толщина незамерзающей прослойки определяется точкой пересечения изотерм Н(р — ро) и /г(П), когда (р — ро) = = П. При каждой заданной температуре Т = Т и давлении ро устанавливается единственно возможная толщина равновесной прослойки и отвечающее ей значение гидростатического давления р = 11 + ро. При невыполнении одного из этих условий равновесное состояние нарушается и ледяная пластина будет либо расти, либо таять. [c.107]


    Поверхность реального фосфолипидного бислоя представляет собой довольно сложное образование. Граничащие с электролитом полярные головки фосфолипидных молекул образуют поверхностный слой (толщиной 0,6—1 нм), заполненный электрическими зарядами и диполями. Часть -этих зарядов и диполей принадлежит самим головкам, другую часть составляют молекулы воды и ионы электролита. Поэтому термины поверхностные заряды , поверхностные диполи в значительной степени условны. Заряды и диполи реальных фосфолипидных поверхностей распределены в приповерхностном слое. Происхождение такого распределения является результатом рыхлости поверхности, позволяющей молекулам воды и ионам электролита проникать в глубь поверхности. [c.150]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Теоретический анализ структуры ДЭС вблизи поверхностей, источники электрических полей которых (заряды и диполи) заполняют определенный поверхностный слой, показывает, что она существенно зависит от толщины этого слоя L. Основным результатом является вывод о том, что поверхностные диполи вносят значительный вклад в электрическое поле, образующееся вблизи поверхности. Поэтому вблизи электрически нейтральной гидратированной гидрофильной поверхности существует электрическое поле, обусловленное поверхностными диполями. Ири дегидратации поверхности (т. е. при L- 0) это поле исчезает. Отметим, что этот результат справедлив только в рамках классической электростатики. В нелокальной электростатике поле вблизи нейтральной гидрофильной поверхности не исчезает и при ее полной дегидратации. [c.153]

    Таким образом, при трении металлов в топливе происходят два процесса образование и рост поверхностных пленок, представляющих собой окислы, сульфиды, карбиды металла и усталостное раз-рушение этих пленок при многократном передеформировании. Интенсивность износа в каждом конкретном случае определяется свойствами и толщиной образующихся поверхностных пленок и их усталостной долговечностью. Графически этот процесс можно изобразить следующим образом (рис. 43) в первый период от т до происходит образование и рост поверхностной пленки до равновесной толщины, после чего пленка работает от Т1 до Тг, затем наступает ее разрушение (от Тг до тз) и цикл повторяется. [c.71]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Изменение скорости (рис. 43, а), нагрузки (рис. 43, б) и температуры топлива (рис. 43, б) по-разному влияет на толщину и долговечность поверхностных пленок, что и обусловливает различнукх интенсивность износа металлов при изменении этих факторов. [c.71]

    Первую количественную теорию строения двойного электрического слоя на границе металл — раствор связывают обычно с именем Гельмгольца (1853). По Гельмгольцу, двойной электрический слой можно уподобить плоскому конденсатору, одна из обкладок которого совпадает с плоскостью, проходящей через поверхностные заряды в металле, другая — с плоскостью, соединяющей центры тя- кестн зарядов 1, онов, находящихся в растворе, по притянутых электростатическими силами к иоверлиости металла (рис. 12.1). Толщина двойного слоя I (т. е. расстояние между обкладками [c.261]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Химические способы очистки не оказывают влияния на изменение толщины поверхностно-напряженного слоя и шероховатость поверхности. Это весьма трудоемкие, дорогостоящие технологические операции, с небла10приятными условиями труда. Поэтому эти способы мало распространены на аппаратостроительных предприятиях. [c.92]

    Синтетический латекс представляет собой коллоидную дисперсию типа масло в воде. Частицы каучука (масляная фаза) в латексе имеют обычно размеры от нескольких десятков до сотен нанометров (редко менее 10 и более 1000 нм). Как всякая дисперсная система с развитой поверхностью раздела, латексы термодинамически нестабильны. Для сохранения коллоидных свойств системы в течение длительного времени поверхность раздела следует гид-рофилизовать, что достигается введением в систему дифильных поверхностно-активных веществ (ПАВ), например солей карбоновых кислот различной природы и строения. Адсорбированные на поверхности раздела гидратированные молекулы и ионы ПАВ образуют защитные слои. Эффективная толщина таких слоев, оцененная по данным вискозиметрических [4, 5], дилатометрических [6], термографических [7] измерений, изменяется от нескольких единиц до десятков нанометров в зависимости от природы и количества образующего их эмульгатора, а также от степени заполнения поверхности частиц адсорбированным эмульгатором (так называемой адсорбционной насыщенности). Адсорбционная насыщенность синтетических латексов обычно лежит в диапазоне от [c.587]

    Воздущно-дуговой способ может бьггь использован для поверхностной и разделительной резки нержавеющих сталей, чугуна, латуни, трудноокисляемых сплавов толщиной до 20. .. 25 мм. [c.116]

    Однако, как отмечается в работе [245], даже строгое решение задач КГТС в изложенной постановке не решает главного для машиностроителей вопроса, поскольку расчетная толщина смазочного слоя интересует их не сама по себе, а как параметр, способный характеризовать эксплуатационные показатели (вид трения в контакте, износостойкость, противозадирную стойкость и контактную выносливость поверхностных слоев деталей). Рассматривая эту проблему более глубоко, следует подчеркнуть, что КГТС из-за идеализации исследуемых объектов использует только упругость материалов и вязкость масла, зависящую от температуры и давления. [c.236]

    Наряду с генерированием тепла при трении имеются и другие превращения энергии возбуждение электрических и магнитных полей, образование термотоков, появление звуковых колебаний. Однако их энергоемкость мала. В зависимостн от условий трения преобразование энергии имеет разную природу, а энергия может концентрироваться в различных частях трибосистемы. Так, если при жидкостном (гидродинамическом) трении энергетические преобразования сосредоточены в слое смазки, то в условиях граничного трения они протекают в тонких поверхностных слоях смазочного материала и тончайших (толщина 10- —10 см) слоях металла. Их сочетание играет роль третьего тела в трибосопряжении. [c.248]

    Ухудшение противопиттинговых свойств с температурой объясняется, с одной стороны, уменьшением толщины масляной пленки в зоне контакта, что приводит к увеличению коэффициента трения и касательных напряжений, а с другой — более легким прониканием масла в поверхностные трещины, что приводит к расклинивающему действию. [c.254]

    Трудность экспериментального обнаружения окисной пленки оказалась связанной с незначительной толщиной этой пленки, поэтому, в частности, рентгенографический метод, позволяющий вследствие высокой проникающей способности рентгеновских лучей рассмотреть кйртину поверхностного слоя толщиной в 100 и более ангстрем, оказался слишком грубым. [c.636]

    П, Д. Данков применил более тонкий электронографический метод исследования. Благодаря тому, что электроны не проникают внутрь металла, а рассеиваются поверхностными слоями, этот метод позволяет получить представление о состоянии поверхностного слоя. Электронограммы показали явное различие между строением поверхностей активного и пассивного металлов. В частности, было установлено, что при пассивировании йикеля на нем образуется NiO, железа-у-РеаОз, алюминия — AI2O3. Толщина окисных слоев составляет всего несколько десятков ангстрем. [c.636]

    Действительно, спектры ЯМР высокого разрешения протонов воды в дисперсиях а- и Ь -монтмориллонита [103] характеризуются сдвигом резонансного сигнала в сторону более сильного поля. Это указывает на то, что под влиянием поверхности часть водородных связей в воде граничных слоев толщиной й 7,5 нм (межчастичное расстояние —15 нм) разрушается. Приведенные результаты нашли независимое подтверждение при изучении ИК-спектров водных дисперсий Ыа-монт-мориллонитрила 20—110%-й влажности в области составной полосы (5200—4900 см ) деформационного и валентного асимметричного колебаний связей ОН (г-2 + з) [Ш]- В цитируемой работе было показано, что вклад высокочастотной составляющей 5200 СМ , относящейся к слабосвязанным молекулам воды, в интегральную интенсивность сложной полосы для дисперсий выше, чем для жидкой воды. ИК-спектры полимолекулярных адсорбционных слоев на поверхности кварца в области валентных ОН-колебаний [112] также обнаруживают увеличение поглощения при 3600 см , характерного для слабо нагруженных ОН-групп молекул воды, хотя основная полоса 3400 см сдвинута по сравнению с аналогичной полосой в спектре жидкой воды в сторону меньших частот. (Последнее, по-видимому, связано с образованием более прочных водородных связей между поверхностными гидроксильными группами кварца и адсорбированными молекулами воды первого слоя.) Таким образом, приведенные выше данные указывают на то, [c.39]

    Состояние вещества на границе раздела фаз. Все жидкости и твердые тела ограничены внешней поверхностью, на которой онн соприкасаются с фазами другого состаЕа и структуры, например, с паром, другой жидкостью или твердым телом. Свойства вещества в этой межфазной поверхности, толщиной в несколько поперечни.-ксв атомов или молекул, отличаются от свойств внутри объема фазы. Внутри объема чистого вещества в твердом, жидком илн газообразном состоянии любая молекула окружена себе подобными молекулами. В пограничном слое молекулы находятся во взаимодействии или с разным числом молекул (например, на границе жидкости или твердого тела с их паром) или с молекулами различной химической природы (иапример, на границе двух взаимно малорастворимых жидкостей). Чем больше различие в напряженности межмолекулярных сил, действующих в каждой из фйз, тем больше потенциальная энергия межфазовой поверхности, кратко называемая поверхностной энергией. [c.310]

    Человеческая кожа, около 3 мм толщины, содержит два основных слоя (рис. VII.16). Внутренний слой, называемый дермой, содержит два вида белковых волокон, обеспечивающих эластичность и прочность кожи. Потовые и жировые железы расположенны именно в этом нижнем слое, соединенном протоками с порами поверхностного слоя. Все клетки дермы живые и должны обеспечиваться кцхзвью. Если у вас после пореза идет кровь, значит, задета дерма. [c.469]

    До сих пор рассматривалось состояние воды, заполняющей пористое тело полностью. При неполном насыщении вода заполняет поры частично, что приводит к образованию пленок, менисков и появлению капиллярного давления. В этой связи возникает вопрос о поверхностном натяжении и кривизне менисков, их равновесии со смачивающими пленками. Толщина смачивающих пленок определяется изотермой их расклинивающего давления, отличающейся от изотермы П(/г) плоских прослоек между твердыми поверхностями тем, что одна из поверхностей смачивающих иленок граничит с газовой фазой. Таким образом, смачиваюп ая пленка воды представляет собой резко несимметричную систему. [c.16]

    В состоянии равновесия расклинивающее давление пленки равно перепаду капиллярного давления на мениске П = Р, , что и позволяет определить зависимость толщины пленок от состояния заполнения пористого тела и кривизны поверхности менисков IRrn. Как известно, Рк = с1Ят, где а — поверхностное натяжение мениска. [c.17]

    Незамерзание пленок объясняется влиянием поля поверхностных сил, изменяющего структуру граничных слоев воды, как показано в разделе 1 этой главы. В отличие от пленок незамерзающие прослойки представляют собой граничную фазу льда, структура которого настолько изменена под действием соседней поверхности, что осуществляется переход из кристаллического состояния в аморфное жидкое. Отличительной чертой является при этом наличие фазовой поверхности раздела между льдом и жидкой незамерзающей прослойкой, что позволяет говорить об ее определенной толщине (/г), являющейся функцией. температуры и давления. [c.102]


Смотреть страницы где упоминается термин Поверхностный толщина: [c.78]    [c.71]    [c.235]    [c.170]    [c.174]    [c.93]    [c.188]    [c.194]    [c.120]    [c.106]    [c.217]    [c.152]   
Курс коллоидной химии 1974 (1974) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция из растворов и модель двухмерного поверхностного раствора постоянной толщины

Дерягин Толщина переходных слоев в теории поверхностных явлений

Зависимость толщины поверхностного слоя oi температуры

Поверхностное толщины граничного слоя

Поверхностный слой толщина

Понятие толщины поверхностного слоя

Пшеницын, А. И, Русанов. Отражение света и толщина поверхностного слоя вблизи критической точки

Связь изотерм поверхностного натяжения и состава поверхностного слоя с условным модулем упругости поверхностного слоя Оценка минимальной возможной толщины поверхностного слоя

Толщина

Толщина и емкость двойного электрического слоя. Соотношение между поверхностным и объемным зарядами



© 2025 chem21.info Реклама на сайте