Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аспарагин белках

    Взаимодействие белка и полисахарида через ацетилглюкозамин, соединенный с 1-, 2- или 4-атомом С в маннозе, с аспарагином белка. [c.23]

    А. к, получают из аспарагина или выделяют из белков, а также синтезируют. [c.32]

    Дикарбоновые аминокислоты. Аспарагиновая и глутаминовая кислоты содержатся не только в белках, но в виде свои.к амидов— глутамина и аспарагина — широко распространены в природе. [c.473]

    Гидролиз белков ферментами пищеварительного тракта применяет-1СЯ главным образом для Проведения неполного ступенчатого расщепления. Полученный тем или иным способом гидролизат содержит смесь аминокислот и аммиак, образовавшийся в -результате расщепления аспарагина и глутамина и частичного дезаминирования пептидов и аминокислот. После предварительного удаления основной массы кислоты или щелочи гидролизат подвергают фракционному разделению на аминокислоты. В течение первых двух десятилетий текущего столетия аминокислоты разделяли в виде их эфиров, которые подвергали перегонке в вакууме (метод Э. Фишера). Позднее этот метод потерял свое значение из-за сложности выполнения и необходимости применения большого количества белка. В настоящее время благодаря появлению метода газовой хроматографии, применение эфиров аминокислот, возможно, вновь окажется интересным. [c.479]


    Небольшие олигосахаридные группы часто присоединены к белкам, находящимся на поверхности клеток, а также к секретируемым белкам. Сахарные цепи прикреплены через 0-гликозидную связь к —ОН-группам остатков серина, треонина и оксилизина (только в коллагене) или через Ы-гликозидную связь к амидному азоту аспарагина [43а]. Среди таких гликопротеидов встречаются ферменты, гормоны и струк- [c.117]

    При pH, характерном для природных вод, катионит сорбирует больщинство аминокислот (глицин, аланин, аргинин, гистидин и др.), а анионит поглощает избирательно только кислые аминокислоты, такие, как глутамин и аспарагин. Чисто ионообменный процесс в этих условиях не реализуется, и взаимодействие с ионитами протекает по функциональным группам сорбента за счет образования водородных связей. Можно предположить, что сходная картина наблюдается и при сорбции органических веществ других классов, например, гуминовых кислот и фульвокислот, полифенолов, карбоновых кислот, белков и др. [c.251]

    Молекула любого белка содержит сотни функциональных групп. Наиболее часто встречающимися являются амидные группы основной полипептидной цепи, а также аминокислот глутамина и аспарагина. Эти группы играют большую структурную роль как доноры и акцепторы водородных связей (см. гл. 27.3). Они имеют также большое значение для формирования и стабилизации кон  [c.456]

    В состав природных белков обычно входят следующие аминокислоты аланин, аргинин, аспарагин, аспарагиновая кислота, цистеин, глицин, глутаминовая кислота, гистидин, глутамин, изолейцин, лейцин, лизин, метионин, оксипролин, пролин, серии, тирозин, треонин, триптофан и валин. Восемь аминокислот организм животных не может синтезировать, поэтому их называют биологически незаменимыми аминокислотами. К ним относятся фенилаланин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и валин. Эти аминокислоты должны регулярно и в нужном количестве поступать в организм вместе с пищевыми продуктами. Недостаток одной из этих аминокислот в пище может стать фактором, лимитирующим рост и развитие организма. В табл. 15 показано химическое строение незаменимых аминокислот и рекомендуемое для человека количество их в сутки. [c.155]

    Замена аспарагина на другие аминокислоты При высоких температурах остатки аспарагина и глутамина могут дезамидироваться с образованием аммиака. Теряя амидную группу, они превращаются в аспарагиновую и глутаминовую кислоты соответственно, что приводит к локальным изменениям конформации полипептидной цепи и как следствие - к утрате активности белков, в которые они входят. [c.170]


    Важной особенностью корневой системы является ее избирательная способность, т. е. способность растений концентрировать в своем организме необходимые питательные вещества в большем количестве, чем они находятся в питательном растворе. Например, в питательной среде находится соль МН4С1, которая в водном растворе диссоциирует с образованием ионов ЫН4+ и ионов С1 . Азот нужен растениям в несравненно большем количестве, чем хлор. Азот используется для образования аминокислот, аспарагина, белков и других сложАлх органических соединений. В этом процессе он как бы выходит из реак- [c.16]

    В белках всех живых организмов обычно встречается только 20 различных типов аминокислот, которые указаны в табл. 21-5. Некоторые из них имеют углеводородный состав, например валин (Вал), лейцин (Лей), изолейцин (Иле) и фенилаланин (Фен). Гидрофобные группы молекул всегда более устойчивы, если их можно удалить из водного окружения. Поэтому белковые цепи в водном растворе складываются в молекулы, у которьгх такие группы обращены вовнутрь. Некоторые остатки аминокислот оказываются заряженными например, аспарагиновая (Асп) и глутаминовая (Глу) кислоты входят в белки в ионизованной форме и несут на себе отрицательный заряд, а основания лизин (Лиз) и аргинин (Apr) при pH 7 положительно заряжены. Несмотря на то что некоторые другие группы, например аспарагин (Асн), глутамин (Глу) и серии (Сер), незаряжены, они имеют полярность и поэтому совместимы с водным окружением. Одним из наиболее важных факторов, определяющих свертывание белковой цепи в глобулярную молекулу, является устойчивость, достигаемая при ориентации гидрофобных групп вовнутрь молекулы, а заряженных групп-наружу. Хотя каждый из двух оптических изомеров, показанных на рис. 21-12, пред- [c.314]

    Состав и строение. Аналитический состав большинства белков колеблется в сравнительно узких пределах. Белки содержат 50— 55% углерода, 6,5—7,3% водорода, 15—18% азота, 21 — 24% кислорода, О—2,47о серы и, как правило, золу. В то же время характер и количество отдельных составных частей, из которых построены белки, очень различны. При гидро,лизе белков всегда оти1епляется аммиак, что объясняется присутств[1ем амидов (аспарагин, глутамин) н, возможно, ураминовых кислот (уреидокислот). [c.395]

    АСПАРАГИН С4НаМ20а — моноамид аспарагиновой кислоты, бесцветные кристаллы, растворимые в воде. Содержится в белках и полипептидах,распространен в растительных и жквотных тканях. [c.32]

    Установлено, что важными составляющими белков являются двадцать три аминокислоты. Названия этих кислот приведены в табл. 14.1 там же указаны формулы характеристических групп К. Некоторые аминокислоты имеют дополнительную карбоксильную группу или дополнительную аминогруппу. Так, имеется двухосновная диаминокислота — цистин, очень близкая к простой аминокислоте цистеину. Четыре из указанных в таблице аминокислот содержат гетероциклические кольца (кольца, состоящие из атомов углерода и одного или нескольких атомов других элементов, в данном случае атомов азота). Две из приведенных аминокислот — аспарагин и глутамин — родственны двум другим — аспарагиновой и глутаминовой кислотам, от которых аспарагин и глутамин отличаются только тем, что имеют вместо дополнительной карбоксильной группы амидную группу [c.385]

    С целью имитации ситуации, имеющей место нри гидролизе белков 6 н. НС1 при 110°, когда производят защиту серусодержащих аминокислот от неконтролируемого окисления, вместо цистеина и метионина на рис. 160 фигурируют цистеинсульфокислота и метионин-сульфон — продукты окисления цистеина и метионина надмуравьиной кислотой по этой же причине отсутствуют аспарагин и глютамин [c.482]

    Ферментные препараты представлены пока одной Ь-аспа-рагиназой, к-рая катализирует гидролиз аспарагина, в результате чего нек-рые опухолевые клетки не получают аминокислоту, необходимую для синтеза белка в иих. [c.122]

    Роль аспарагина и глутамина в растениях заключается в обезвреживании аммиака, образующегося при дезаминировании аминокислот. Накапливающийся в семенах аспарагин используется затем при прорастании для синтеза белков в молодых тканях ростка. Физиологическая роль обоих амидов была у становлена Д. Н. Прянишниковым. Оба амида найдены также в белках. Присутствием этих амидов объясняется образование аммиака во время гидролиза белков. [c.473]

    Белки. 1. Инсул ин. Молекулярный вес 6000. Строение установлено в 1952 г. Зангером и Таппи. Состоит из двух цепей А и В, соединенных двумя дисульфидными мостиками. Цепь А состоит из 21 аминокислотного остатка, с Ы-концевой и С-концевой аминокислотами—-глицином и аспарагином. Цепь В содержит 30 аминокислотных остатков с фенилаланином на Ы-конце и аланином на С-конце цепи. Это первый белок, строение которого расшифровано полностью. В процессе этого исследования Зангером был разработан (комплекс методов, который послужил основой для всех последующих исследований строения белков. [c.527]

    Если неизвестно, какая аминокислота стоит в цепи белка — аспарагин или аспарагиновая кислота — используют обозначение Азх или В. В случае глутамина или глутаминовой кислоты применяется обозначение 0 х или 2 [c.82]


    Первой выделенной природной аминокислотой был аспарагин. Он был изолирован в 1806 г. Вокелином и Робике из сока спаржи. Эта аминокислота относится к 20 аминокислотам, являющимся основными составными частями животных и растительных белков, причем их встраивание в молекулу белка регулируется информащ1ей генетического кода. Этим так называемым протеиногенным аминокислотам посвящен следующий раздел. [c.17]

    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]

    Гликоаминокислоты входят в состав широко распространенных в животном и растительном мире гликопептидов и гликопротеинов (протоглика-нов). Они являются связывающим звеном между углеводными компонентами и пептидными цепями. Связывание происходит с использованием гидроксильных групп серина или треонина (О-гликозидная связь), как, например, в иммуноглобулинах, аминогрупп лизина и аргинина или же амидной группы аспарагина (Ы-гликозидная связь), как, например, в белках плазмы и в лактальбумине, или посредством свободных карбоксильных групп аминодикарбоновых кислот (эфирная связь). [c.75]

    Глиадины относятся к белкам с наименьшими зарядами в самом деле, они содержат только от 6 до 11 основных остатков на молекулу (лизин, гистидин, аргинин). С другой стороны, приблизительно от 85 до 95 % остатков глутаминовой и аспарагиновой кислот находятся в форме амидов (глутамин, аспарагин) (например, [73]). На молекулу приходится только 8—9 свободных карбоксильных групп. Для сравнения, сывороточный бычий альбумин с молекулярной массой, близкой к молекулярной массе ы-глиадинов, содержит 95 основных групп и 92 свободные карбоксильные группы на молекулу [116]. [c.186]

    Авторы ЭТОЙ работы [5] воздействуют на белки сои, находящиеся в диспергированной форме в концентрации 10%. Под действием тепловой обработки (80°С, 30 мин) эта диспергированная система преобразуется в прогель, характеризуемый повышенной вязкостью. Прогель при охлаждении до 40 °С в течение 1 ч превращается в гель. Превращение прогеля в метазоль происходит под действием чрезмерного нагрева, или перегрева (125°С), вызывающего химическую деградацию белков. В частности, наблюдаются деструкция цистеина, а также дезамидирование аспарагина и глутамина — явления, способные помешать гелеобразованию. [c.518]

    Эта реакция не пригодна для отщепления С-концевых остатков пролина, так как они не образуют тиогидантоин, остатков аспарагиновой и глутаминовой кислот, которые образуют циклические ангидриды, а не тиогидантоины (аспарагин и глутамин, наоборот, дают тиогидантоины [301]), а также остатков серина, треонина, цистина, аргинина и лизина [19, 301], которые неустойчивы при циклизации или регенерации аминокислоты из тиогидантоинового производного. Таким образом, этот метод находит весьма ограниченное применение для прямого определения строения пептидов и белков. Для определения С-концевого остатка по разности [107] реакция может оказаться более полезной, но ее все же нельзя использовать для определения аспарагиновой и глутаминовой кислот и пролина. Однако путем микробиологического анализа [107], специфичного для остатков /-аминокислот, эти аминокислоты могут быть определены по потере оптической активности на 50% вследствие рацемизации в том случае, когда они являются С-концевыми. [c.247]

    Один из видов РНК, так называемая РНК-посредник, или информащон-ная РНК переносит информацию на рибосому, где собственно и происходит синтез белка. В рибосому к информационной РНК поступает набор транспортных РНК, каждая из которых связана с определенной аминокислотой (о последовательности оснований в одной из этих 20 транспортных РНК, а именно об РНК, переносящей аланин, и шла речь на стр. 1062). Порядок поступления молекул транспортной РНК в рибосому, а следовательно, и последовательность включения аминокислотных остатков в белковую цепь зависит от последовательности оснований в цепи информационной РНК- Так, ГУА является кодовым словом для аспарагиновой кислоты, УУУ — для фенилаланина, УГУ — для валина. Существует 64 трехбуквенных слова (64 кодона) и лишь двадцать аминокислот, и поэтому одной и той же аминокислоте могут соответствовать несколько кодонов для аспарагина — АЦА и АУА, для глутаминовой кислоты — ГАА и АГУ. [c.1065]

    Однако в завершенных белках такой олигосахаридной структуры, как правило, не встречается. Оказывается, эта структура представляет лишь промежуточную в общем процессе N-гликозилирования белка. Дело в том, что вслед за описанным ко-трансляционным этапом следует посттрансляционный этап, который осуществляется в основном по поступлении синтезированного белка в аппарат Гольджи. Посттрансляционный этап приводит к удалению глюкозы и последовательному частичному отщеплению остатков маннозы, а затем часто к добавлению остатков N-ацетилглюкозамина, галактозы и сиаловой кислоты, а иногда также фукозы и ксилозы в конце концов получается разветвленный гетероолигосахаридный остаток, присоединенный к амидной группе аспарагина соответствующего готового белка. [c.288]

    Для гидролиза белков до составляющих их аминокислот обычно используют хлороводородную кислоту (бМ, 24 ч, 120°С, эвакуированные запаянные ампулы). Однако этот метод не лищеи побочных реакций. Из генетически кодированных аминокислот интенсивно распадается триптофан, в то время как выходы серина и треонина составляют только 90—95%. Может происходить также хлорирование тирозина и образование орнитина из аргинина. Нередко метионин частично превращается в соответствующий сульфоксид, а цистеин полностью окисляется в цистин. Глутамин и аспарагин, естественно, гидролизуются до глутаминовой и аспарагиновой кислот. Использование п-толуолсульфокислоты может повысить выход триптофана [11], однако эту аминокислоту обычно определяют после гидролиза с помощью гидроксида бария. С другой стороны, щелочной гидролиз, помимо того, что вызывает рацемизацию, приводит к больщим потерям серина, треонина, цистеина и аргинина. [c.231]

    В гликопротеинах гликозидная связь осуществляется либо за счет гидроксильных групп боковых групп, либо с участием азота аспарагина, хотя известен один пример 5-замещения в белке мочи, из которого был выделен дигалактозилцистеин [14]. Однако во всех случаях углевод теряется при мягком кислотном гидролизе. Лучшим является способ, когда кислотному гидролизу предшествует ферментативное удаление углеводных остатков, так как присутствие последних может приводить к деструкции аминокислот в процессе гидролиза. [c.232]

    Обработка белков 6 М НС1 при 110°С в вакууме приводит к гидролизу пептидных связей, но одновременно с этим происходит разложение триптофана, гидролиз аспарагина и глутамина соответственно до аспарагиновой и глутаминовой кислот, а также частичное разложение серина, треонина, цист(е)ина. Пептидные связи между аминокислотами с объемистыми боковыми группами, такими как Пе и Val, более устойчивы к гидролизу. Хорошо известно, что гидролизуя образцы белков в течение 1, 2 и 3 дней, необходимо экстраполировать количество таких аминокислот, как Ser и Thr к нулевому времени, а Пе и Val — к бесконечному. В случае цист(е)ина целесообразно перед гидролизом либо окислить его в цистеиновую кислоту, либо превратить в 5-карбоксиметилци-стеин или 4-пиридилэтилцистеин (см. разд. 23.3.3), так как все эти соединения стабильны. Обычно, в особенности если белок содержит углеводы, образуются продукты осмоления. После гидролиза соляную кислоту лучше удалить, так как она мешает при после дующем разделении аминокислот. [c.259]

    Гидролиз белков ЗМ /г-толуолсульфокислотой или АМ метан-сульфокислотой [7,8], содержащей 0,2% триптамина, в вакууме при 110°С, в течение 3 суток с хорощим выходом приводит к аминокислотам, включая триптофан, однако углеводы могут мешать. Триптофан можно определять также после щелочного гидролиза, но при этом разрушаются полностью аргинин, цист(е)ин, серин и треонин. Общее содержание амидов, обусловленное наличием аспарагина и глутамина, можно определить после гидролиза 10 М НС1 при 37°С в течение 10 суток и последующего анализа на аммиак с помощью микродиффузионной техники. Раздельное определение аспарагина и глутамина можно провести с помощью предварительной этерификации (метанол-уксусный ангидрид) свободных карбоксильных групп, последующего восстановления (борогидрид лития) образовавшихся сложноэфирных групп и определения аспарагиновой и глутаминовой кислоты после кислотного гидролиза соответственно в виде v-гидрокси-а-аминомасляной кислоты и б-гидрокси-а-аминовалериановой кислоты. Содержание аспарагина и глутамина получают путем вычитания этих величин из содержания аспарагиновой и глутаминовой кислот после полного гидролиза немодифицированного белка. Полный ферментативный гидролиз белков без деструкции аминокислот можно осуществить, используя смешанные конъюгаты Сефарозы с трипсином, химотрипсином, пролидазой и аминопептидазой М [9]  [c.260]

    Углеводные компоненты соединены ковалентно с азотом аспарагина молекулы белка. Однако предварительно олигосахаридная часть соединяется с липидным переносчиком—долихолфосфатом (липид, содержащий от 15 до 20 изопреновых остатков) и переносится на полипептидную цепь в эндоплазматическом ретикулуме, при этом транспортер освобождается  [c.92]


Смотреть страницы где упоминается термин Аспарагин белках: [c.646]    [c.648]    [c.654]    [c.57]    [c.475]    [c.516]    [c.105]    [c.209]    [c.291]    [c.485]    [c.59]    [c.10]    [c.39]    [c.43]    [c.216]    [c.173]    [c.259]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Аспарагин



© 2025 chem21.info Реклама на сайте