Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий магнитные свойства

    По магнитным свойствам различают диамагнитные металлы (выталкиваемые из магнитного поля) и парамагнитные (втягиваемые магнитным полем). Диамагнитны медь, серебро, золото, цинк, кадмий, ртуть, цирконий. Парамагнитными считают скандий, иттрий, лантан, титан, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, рутений, радий, палладий, осмий, иридий, платину. Железо, кобальт и никель обладают ферромагнетизмом, т. е. особенно высокой магнитной восприимчивостью. [c.257]


    Среди комплексных соединений, также применяемых в качестве катализаторов, лишь те парамагнитны, которые содержат атомы с неполностью занятыми подгруппами (п = Зд, 4д, или 63 соответственно). Из сравнения [266] магнитных свойств комплексных соединений хрома, железа, кобальта, никеля и меди со свойствами их ионов видно, что аммиачные комплексы хрома, никеля и меди почти так же сильно магнитны, как ионы Сг , N1 и Си , между тем как аммиачные комплексы кобальта и цианид железа не магнитны. Они имеют магнетизм часто типа насыщенных соединений ванадия, хрома, марганца и ниобия. [c.81]

    При повышенных температурах и давлениях водород диффундирует в металлы. Наибольшее количество водорода поглощает палладий, который не только адсорбирует, но и растворяет Нз. В палладий водород проникает уже при 240° С, диффузия водорода в мягкое железо значительна при 40—50 ат и температуре около 400° С. Поглощение водорода многими металлами (Ре, Со, N1 и др.) увеличивается с повышением температуры и давления. При охлаждении металла и снижении давления большая часть поглощенного водорода выделяется. При сверхвысоких давлениях сталь заметно поглощает водород даже при комнатной температуре. Количество адсорбируемого водорода зависит от структуры поверхности металла. Металлический порошок поглощает водорода больше, чем сплавленный, вальцованный или кованый металл. При поглощении водорода могут изменяться твердость, термическая стойкость, текучесть, электропроводность, магнитные и другие свойства металлов и сплавов. Для уменьшения диффузии водорода в металлы при повышенных давлениях и температурах обычно применяют легированные стали, содержащие хром, молибден, ванадий, вольфрам и другие легирующие металлы. [c.19]

    Известно, что наплучшую прокалпваемость стали придает молибден, наибольшую вязкость сталь приобретает от введения никеля, а ее магнитные свойства усиливаются присутствием кобальта. Далеко не всегда можно точно сказать, почему та пли иная легирующая добавка придает стали определенные качества. А вот о причинах улучшения свойств стали ванадием многое известно достаточно полно и достоверно. [c.338]

    Тантал повышает устойчивость стали к окислению Сплавы Со—Ре с добавками ванадия обладают уникальными магнитными свойствами Часто ванадием легируют титановые сплавы Сплавы на основе ванадия служат антикоррозионным конструкционным материалом для химической аппаратуры Ванадиевые сплавы устойчивы к щелочам, серной и даже фтористоводородной кислоте [c.22]


    Почти все карбонилы- металлов диамагнитны и не обладают дипольным моментом. Исключение составляет парамагнитный карбонил ванадия V( O)e. Неподчиняющиеся правилу ЭАН карбонил технеция T a( 0)i2 и карбонилы Me6( O)i6, по-видимому, также парамагнитны, но их магнитные свойства еще недостаточно изучены [17, 18]. [c.18]

    Эти представления позволяют объяснить и магнитные свойства указанных элементов. Так, например, если бы в металлическом ванадии (атомная конфигурация Ы Аз ) в образовании связей участвовали только 45 -электроны, атомный остов должен был бы обладать большим дипольным моментом. В результате должен был бы появиться ферромагнетизм или сильный парамагнетизм, уменьшающийся с ростом температуры. В действительности же ванадий лишь слабо парамагнитен, причем парамагнитный момент почти не зависит от температуры. Это указывает на то, что все его внешние электроны участвуют в образовании связей. Подобным же образом и все остальные элементы упомянутых выше рядов диамагнитны или слабо парамагнитны. [c.14]

    Другие металлы (алюминий, хром, титан, ванадий, молибден), обладают очень слабой способностью намагничиваться, причем без специальных приборов обнаружить их магнитные свойства нельзя. Эти металлы объединены в группу так называемых парамагнитных металлов (от греческого — около, возле). [c.301]

    Для большинства карбонилов металлов справедливо правило Сиджвика относительно эффективного атомного номера (ЭАН) рассматриваемых переходных металлов. Согласно этому правилу, каждый металл вступает в реакцию таким образом, что у пего оказывается такое число электронов, как у ближайшего последующего инертного газа в периодической таблице. Например, никель реагирует с четырьмя молекулами окиси углерода и получает от них восемь электронов (помимо своих 28), так что общее число электронов у него становится равным 36, что соответствует атомному номеру криптона. Металлы с нечетными атомными номерами в большинстве случаев образуют соединения со связями металл — металл или с мостиковыми карбонильными группами. В других случаях карбонилы таких металлов проявляют парамагнитные свойства, связанные с наличием неспаренных электронов. На первых этапах исследования карбонилов металлов все синтезированные тогда карбонилы подчинялись правилу эффективного атомного номера и соответственно обладали диамагнитными свойствами. Однако полученный в недавнее время карбонил ванадия [19] показал возможность несоблюдения правила ЭАН и образования парамагнитных соединений с неспаренными электронами. По-видимому, и Тсз(С0) 2 также не подчиняется правилу ЭАН, но магнитные свойства этого соединения не были изучены с достаточной полнотой [21]. Открытые в самое последнее время соединения Ме(С0)1б так сильно отклоняются от правила ЭАН, что их магнитные свойства пока трудно даже обсуждать [24]. [c.93]

    Влияние примесей. Примеси значительно влияют на свойства сталей. Кремний повышает прочность, упругость и магнитную проницаемость сталей. Например, стали с содержанием кремния до 2% являются хорошим материалом для рессор, а стали с содержанием кремния до 4% и углерода до 0,1% идут на изготовление магнитов. Марганец увеличивает твердость, прочность, упругость и способствует самозакаливаемости стали. Хром увеличивает прочность, твердость, упругость, износостойкость от трения, сопротивление коррозии, а также способствует самозакаливаемости стали и улучшает магнитные свойства ее. Никель увеличивает вязкость, прочность, сопротивление коррозии, способствует прокаливаемости и самозакаливаемости стали. Сочетание хрома с никелем придает сталям очень высокие механические свойства. Вольфрам повышает прочность, твердость, способствует прокаливаемости и самозакаливаемости, а также придает стали стойкость при высоких температурах. Например, режущие инструменты из стали с содержанием вольфрама свыше 5% при нагревании до 600—700°С не теряют режущие способности. Ванадий, при содержании его до 0,7%, повышает прочность, упругость, твердость и вязкость стали. Молибден повышает прочность, твердость, упругость, прокаливаемость и самозакаливаемость стали. Алюминий при содержании до 1,0—2,5% позволяет получать очень высокую твердость поверхности стали после нитрирования (насыщения поверхности стали азотом при температуре 470—600°). Медь и мышьяк увеличивают хрупкость стали. [c.13]

    По химическому составу сплавы с заданным температурным коэффициентом линейного расширения являются многокомпонентными сплавами на железоникелевой и железохромистой основах. Для получения требуемого сочетания свойств основы этих сплавов (Р—N1, Ре—Сг) дополнительно легированы кобальтом, медью, титаном, алюминием, ванадием, молибденом, вольфрамом и др. (одним или несколькими из указанных элементов одновременно). В табл. 16 приведены данные об электрических, магнитных и [c.39]

    Подобно вюститу, высокотемпературные модификации закиси титана и ванадия кристаллизуются в структуре каменной соли [324—376], обладают экстремально широкими областями гомогенности и вследствие этого проявляют уникальные структурные, магнитные, электрические и прочие физические и химические свойства . Но в отличие от закиси железа, характеризующейся катионной недостаточностью, TiO и V0 имеют несовершенные атомные и катионные кристаллические подрешетки одновременно. Ширина области гомогенности определяется равновесными условиями синтеза (Ро, Т) и давлением Р. [c.167]


    Исследуя ИК-спектры, а также термодинамические, магнитные и электрические свойства моноокисей титана и ванадия. [c.179]

    Аналогичное рассмотрение влияния С-вакансий на энергетический спектр и полосу проводимости можно провести и для монокарбидов ванадия. Однако в результате отсутствия стехиометрического УСх.о и наличия упорядоченного высшего карбида УСо,88, узости З -по-лосы ситуация несколько более сложная. Можно предложить две модели построения энергетического спектра электронов в дефектном монокарбиде ванадия. Согласно первой модели (рис. 2.1), увеличение концентрации С-вакансий в УС приводит к непрерывному повышению Ер в полосе проводимости, т. е. к быстрому заполнению в силу ее узости. Эта модель объясняет, по-видимому, имеющиеся результаты исследования электронной теплоемкости УС [4], некоторые кинетические свойства, а также не противоречит данным о магнитной восприимчивости [5, 6]. Наоборот, она позволяет оценить вклад парамагнетизма Ван-Флека в измеряемую величину % [7] и указывает также на взаимную деформацию полос Ме — Ме и Ме — С в дефектных монокарбидах (последним в развиваемых представлениях пренебрегают). [c.44]

    Самую большую группу соединений с известными структурами образуют соединения типа МО (ОН), где М — алюминий, скандий, иттрий, ванадий, хром, марганец, железо, кобальт, галлий и индий. Ряд соединений МО (ОН), так же как гидроксиды трехвалентных металлов и оксиды М2О3 алюминия и железа, имеют а- и у-модификации. Так называемый p-FeO(OH), строго говоря, не является гидроксид-оксидом он имеет структуру а-МпОг и устойчив только в присутствии определенных ионов, таких, как С1 , внедренных в пустоты каркаса [3J. Темно-коричневый б-FeO (ОН), обладающий ярко выраженными магнитными свойствами, получают быстрым окислением Ре (ОН) 2 в растворе NaOH он имеет очень простую структуру, в основе которой лежит гексагональная плотнейшая упаковка О (ОН), а ионы РеЗ+ заселяют определенные пустоты. Результаты исследования магнитных свойств лучше согласуются со статистическим распределением ионов металла по всем октаэдрическим позициям, чем с частичной заселенностью некоторых тетраэдрических позиций, как предполагали ранее [4]. Структура Е-РеО(ОН) рассматривается ниже. [c.366]

    СЯ при нагревании до 320 °С, давая трифторид и летучий пен-тафторид . Есть также указание з, что при нагревании хлор-окиси ванадия во фтористом водороде образуется инертная фторокись VOF2. Несколько лет тому назад появилось краткое сообщение о получении реакцией между фтором и комплексами ванадия (И ) соединений, которые могут быть комплексами ванадия (IV), однако никакие другие подробности не приводят-ся ° . Строение и магнитные свойства тетрафторида и оксиди-фторида ванадия должны представлять большой интерес, но они не были изучены. [c.99]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]

    Важным для металлургии стал метод улучшения сортности (легирование) стали путем добавления точно дозированных количеств различных металлов или других веществ, свойства которых, а также возможности использования были уже изучены химиками. Например, в 1882 г. Роберт Эббот Хэдфилд получил патент на получение марганцевой стали , содержащей 12% марганца. После нагревания до 1000° С и охлаждения в воде она становилась тверже обычной стали. Добавлением к стали в определенных соотношениях различных металлов (хрома, ванадия или вольфрама) были получены и другие легированные стали. В 1916 г. Катаро Хонда, добавив к вольфрамовой стали кобальт, получил сплав с высокими магнитными свойствами. Через три года Элвуд Хейнс изготовил нержавеющую сталь, содержавшую добавки хрома и никеля. [c.221]

    Анализ температурной зависимости магнитной восприимчивости свидетельствует о ферримагнимных свойствах кластера при большом содержании железа. При малом содержании железа или полной замене его на ванадий наблюдается антиферромагнитное поведение нанокластера. Интересной особенностью появления антиферромагнетизма является влияние двухвалентного железа, приводящего к усилению эффекта. Поскольку измерение намагниченности требует макроскопического количества вешества и может быть результатом конкуренции влияния соседних кластеров, доказывается, что суммирование по спинам отдельных блоков идет в одном кластере. [c.236]

    Кристаллическая структура циклопентадиенилида марганца сама по себе не может служить доказательством типа связи, поскольку два иона СзН , расположенные симметрично по отношению к иону Мп , создадут такую же конфигурацию, как у сэндвичевого соединения ферроценового типа. И действительно, Вейсе и Фишер [28] установили подобную слоистую структуру для Мп(С5Н5)2, но они не учли другие его свойства, перечисленные выше. Что касается бис-циклопентадиенильных соединений ванадия и хрома, то их магнитные свойства находятся в соответствии с ферроценовым расположением молекулярных орбит однако для них можно написать также и ионные структуры с тем же числом неспаренных электронов, что и в молекулах с сэндвичевыми связями. Отсюда возникает возможность резонанса (в формальном химическом смысле) между двумя формами, чем объясняются промежуточные свойства. Более того, наличие многих незаполненных орбит у титана, ванадия и хрома (в противоположность железу, кобальту и никелю) делает возможной сольватацию атомов этих металлов донорными растворителями, изменяя структуру и вызывая сольволитическую диссоциацию, не отмечавшуюся у ферроцена [25а]. [c.266]

    Для большинства соединений переходных металлов весьма характерным является их цвет. Почти каждое соединение ванадия, хрома, марганца, железа, кобальта, никеля и меди характеризуется вполие определенным цветом, причем этот цвет зависит не только от атомного номера данного металла, но и от его окислительного состояния и в известной мере от характера неметаллического элемента или кислотного радикала, с которым соединяется данный металл. Можно считать установленным, что цвет таких соединений зависит от наличия незаполненной М-оболочки электронов, т. е. от того, что Ж-оболочка содержит меньше максимального числа электронов, равного восемнадцати. Как правило, соединения бесцветны в тех случаях, когда М-оболочка заполнена это имеет место, нанример, в случае соединений двухвалентного цинка (ZnS04H т. д.) и одновалентной меди ( u l и т. д.). Другое свойство, характерное для незаполненных внутренних оболочек, — парамагнетизм, т. е. свойство вещества притягиваться сильным магнитным полем. Почти все соединения переходных элементов, находящихся в окислительных состояниях, при которых имеются иезаполненные внутренние оболочки, характеризуются ярко выраженными парамагнитными свойствами. Получение из руд и очистка некоторых переходных металлов были рассмотрены в предшествующей главе, где говорилось о свойствах этих металлов и их сплавов. [c.418]

    Этот эффект становится еще более разительным, когда характеристические свойства разных ионов заметно различаются. В частности, так обстоит дело для переходных металлов, когда как магнитные, так и оптические свойства (поглощение, флуоресценция) зависят от числа валентных электронов. Например, в системе AI2O3 - - V ванадий может присутствовать в виде V " , V3+ и V и в этих состояниях дает характерные отличия в спектрах парамагнитного резонанса [169] . Келлер [170] показал, что отношение количества [c.508]


Смотреть страницы где упоминается термин Ванадий магнитные свойства: [c.366]    [c.185]    [c.290]    [c.7]    [c.748]    [c.655]    [c.7]    [c.117]    [c.243]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий, свойства



© 2025 chem21.info Реклама на сайте