Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Удельное хрома

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Рё, N1, Со, Ад). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь. [c.83]


    Если материал содержится при высокой температуре, то на его поверхности не образуется пленка, которая может стать проводником даже при высокой влажности. Поэтому создают временную или постоянную пленку с достаточной электрической проводимостью. Для этого наносят на поверхность диэлектрика электропроводящие вещества разбрызгиванием или распылением, а также окрашивают оборудование специальными лаками и красками. В качестве антистатиков применяются препарат Акор , соединения магния, хрома и другие соединения, которые в значительной степени снижают удельное сопротивление веществ. [c.342]

    Хлористый хромил дает кислородсодержащие производные с ароматическими углеводородами, обладающими боковыми цепями. Шульц получал продукты окисления в форме желтых порошков, разлагавшихся водой, выход которых увеличивался с повышением удельного веса фракций. [c.93]

    На рис. 1Х-2 показана графическая зависимость Го=/(ДР). В координатах АР—Го нанесены значения удельного сопротивления осадка (черные кружки), вычисленные по уравнению (IX,3), а также значения удельного сопротивления осадка (белые кружки), найденные в опытах по разделению обычной суспензии гидроокиси хрома, полученной при соблюдении тех же условий, которые были приняты при приготовлении сгущенной суспензии. Как видно из рис. 1Х-2, значения удельного сопротивления осадков, полученных при разделении обеих суспензий, располагаются около одной кривой. [c.322]

Рис. 75. Зависимость удельного увеличения массы низкоуглеродистой стали после 1-4 окисления в воздухе от содержания хрома, алюминия и кремния при разных температурах, С Рис. 75. <a href="/info/869526">Зависимость удельного</a> <a href="/info/26568">увеличения массы</a> <a href="/info/1273912">низкоуглеродистой стали</a> после 1-4 окисления в воздухе от <a href="/info/1291545">содержания хрома</a>, алюминия и кремния при разных температурах, С
    Пример 1.5. При фильтровании водной суспензии гидроокиси хрома на лабораторном фильтре были получены значения удельного сопротивления осадка Гос (в м ) в зависимости от перепада давления на фильтре Др (в н/сл ), приведенные в табл. 1-6 (столбцы 1 и 2). [c.23]

    Сила тока короткозамкнутого элемента тем больше, чем ниже перенапряжение водорода на электроде, введенном в контакт с амальгамой. С этой точки зрения целесообразно применять в электродах металлы с низким перенапряжением водорода. Однако металлы в разной степени смачиваются ртутью, и скорость разложения амальгамы при добавлении этих металлов резко снижается. На практике пока единственным материалом, применяемым для ускорения разложения амальгамы, является графит. К его недостаткам следует отнести сравнительно высокое перенапряжение водорода, высокое удельное сопротивление и малую механическую прочность. Для снижения перенапряжения водорода на графите его предложено пропитывать солями хрома и молибдена, однако эффект, вызываемый этими солями, непродолжителен. [c.162]


    Определите удельную теплоемкость хрома. Какие данные Вам для этого нужны  [c.80]

Рис. 35. Зависимость удельной каталитической активности (/) и количества Сг + (2) в окиснохромовых катализаторах полимеризации этилена от общего содержания хрома в катализаторе Рис. 35. Зависимость <a href="/info/362152">удельной каталитической активности</a> (/) и количества Сг + (2) в <a href="/info/1606448">окиснохромовых катализаторах полимеризации</a> этилена от <a href="/info/403224">общего содержания</a> хрома в катализаторе
    Осаждение хрома из хромовокислого раствора в качестве металлургического процесса имеет некоторые особенности. В этом случае стремятся получить мягкие толстые осадки хрома высокой чистоты с возможно низким удельным расходом электроэнергии. [c.107]

    Рассчитайте а) суточную производительность гю хрому электролизера нагрузкой 5000 А 6) удельный расход электроэнергии на 1 кг катодного хрома, если напряжение на ванне [c.276]

    Сплавы. Металлы в чистом виде применяют на практике гораздо реже их сплавов. Это связано с тем, что сплавы часто обладают более высокими техническими качествами, чем чистые металлы. Так, латунь (сплав меди и цинка) значительно тверже меди и цинка отдельно взятых. Сплавы, как правило, плавятся при более низких температурах, чем образующие их металлы. Так, температуры плавления натрия и калия соответственно равны 97,5 и 62,3 °С. Сплав же, состоящий из 56% (масс.) Na и 44% (масс.) К, плавится при 19 °С, Удельные электрические сопротивления сплавов и образующих их металлов также значительно отличаются. Например, удельное сопротивление никеля равно 7-10 , хрома—15-10- , а их сплава — нихрома [80% (масс.) Ni + 20% (масс.) Сг] —110-10- Ом-ем. В настоящее время в технике применяют большое число различных сплавов, обладающих заранее заданными свойствами, причем для их получения используют более 40 химических элементов в самых разнообразных сочетаниях и ко личественных соотношениях, [c.397]

    Если основным материалом являются пластмассы, то вначале необходимо применить электролиз медного или никелевого осадка. Для того чтобы основной слой стал электропроводным, часто приходится использовать плотные пластичные грунтовые покрытия с целью сохранения адгезии между пластмассой и слоями хрома и никеля. В противном случае из-за разной удельной теплопроводности этих материалов может возникнуть внутреннее напряжение на межфазных границах. [c.126]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Контакты с боляшой удельной поверхностью и высоким содержанием никеля склонны к спеканию и коагуляции малких частиц металла. Поэтому в них вводят стабилизаторы, предохраняющие кристаллиты никеля 05 спекания в процессе работы, которы1,1и служат оксиды алши-ния, хрома, магния и другие огнеупоры, состоящие из мелких кристаллитов 114]. Стабилизирующее влияние оказывает и носитель, в качестве которого применяют огнеупорные окислы. К выбору носителя подходят с большой осторожностью, так как условия эксплуатации ка- [c.39]


    Хромит меди 39,6% uO 41,7% rjOg i 8,6% ВаО.Порошок средний насыпной вес 0,21 удельная поверхность 45-50 м2/г. [c.236]

    Введение антнпиреновых добавок, например фосфорсодержащих соединений, позволяет в процессе активации увеличить объем пор и удельную поверхность при сохранении приемлемых механических свойств УВ и тканей. Активация УВ с добавками хрома позволяет получить микропоры при полном отсутствии мезопор. [c.626]

    Из различных режимов катодного осаждения хрома из хромовой кислоты (гл. XII) для электроэкстракции применяется режим, обеспечивающий максимальный выход по току и получение мягких осадков, т, е. электролиз при низких температурах (25—36°С) в растворе, содержащем 250—350 г/л СгОз, при СгОз Н2504 = 100, = 2800—8000 А/м . Выход по току — до 35%, напряжение 6—8 В. Удельный расход электроэнергии 40 000—70 000 кВт-ч/т, т. е. значительно выше, чем при электролизе раствора трехвалентных соединений хрома. [c.286]

    Напряжение на хромовых ваннах в зависимости от плотно-.сти тока равно 4—6 в. При выходе по току 15% удельный расход электроэнергии равен 85—120 квт-ч яа 1 кг хрома. На 1 кг электролитического хрома расходуется до 4 кг СгОз, если учесть его унос из ванны. Производительность ванны на 5000 а равна примерно 6 кг1сутки. [c.536]

    Температура электролиза 50—55° С плотность тока 800— 1200 а/м , напряжение на ванне 4,5—5 в выход по току для хрома 35—45% удельный расход электроэнергии 18— 20 квт-ч1к8. [c.537]

    Окись алюминия как основной компонент алюмохромовых катализаторов выполняет несколько функций. Являясь носителем, она влияет не только на механические и физические свойства алюмохромового катализатора, увеличивая, например, его удельную поверхность или предохраняя от спекания, но и на каталитические свойства. Предполагается, что присутствие А12О3 стабилизирует электронное состояние хрома, что имеет большое значение для его каталитической активности. Кроме того, кислая природа поверхности окиси алюминия является основной причиной крекирующей и изомеризующей активности катализаторов. [c.136]

    Удельное электрическое сопротивление. По этому показателю сплавы также отличаются от исходных чистых металлов. Например, удельное сопротивление (в омосантиметрах) у никеля равно 7-10- , у хрома — 15-10- , а у нихрома (80% N1 + 20% Сг) это сопротивление составляет 110-10- ом-см, т. е. значительно больше, чем у отдельных компонентов указанного сплава. [c.306]

    Энергетическая ширина 45-зоны составляет около 10 эВ, причем в ней на атом металла приходится всего два электрона. Ширина З -зопы меньше (для никеля 2,8 эВ), но число электронов в ней, конечно, больше, — именно максимум десять на атом. Электропроводность металлов в основном обусловлена электронами 4s-зоны. Перекрывание этих двух зон в оксидах меньше, чем в металлах, и даже может и вовсе не иметь места. В этом случае электропроводность обусловлена только электронами З -зоны. Наконец, могут быть случаи, когда эта зона становится настолько узкой, что можно говорить о фиксации всех электронов на соответствующих катионах решетки. Оксид в этом случае становится диэлектриком. Замечательно, что совершенно чистые и бездефектные кристаллы оксидов хрома (III), марганца (III), железа (111), кобальта (И), никеля (II) и меди (II) тока не проводят — их удельное сопротивление достигает 10 ° Ом-см. Проводимость появляется, если в кристаллах содержатся примеси. [c.288]

    Несмотря на то, что при расщеплении не удалось добиться высокой оптической чистоты, были зафиксированы вращения в сотни градусов, так как удельное вращение этих комплексов очень велико [10]. Сходным путем [11] — хроматографированием на О-(- -)-лактозе, были частично расщеплены на оптические антиподы трцс-ацетилацетонаты хрома, кобальта, рутения, родия. Комплекс трехвалентного хрома с гексафтор-ацетилацетоном был получен в оптически активной форме расщеплением с помощью газо-жидкостной хроматографии на Оптически активном кварце. [c.670]

    Используемые на практике электролиты содержат 250—350 г/л СгОз и 2,5—5 г/л Н2304 обычно отношение СгОз Н2304 в растворе равно 100 1. Температура в ванне поддерживается 25—35° С. Плотность тока колеблется в пределах 2800—8000 а/м . В этих условиях катодный выход по току (в расчете на шестивалентный хром) составляет от 20 до 35%, напряжение на ванне равно 5—8 а. Удельный расход электроэнергии при этом составляет порядка 40000—70000 квт-ч/т. Расход хромового ангидрида равен примерно 2—2,5 г на 1 г металлического хрома. [c.107]

    Обычный электролитический хром плохо смачивается маслом, что при больших удельных давлениях приводит к сухому или полусухому трению, а это в свою очередь ведет к преждевремен- [c.198]

    Рассчитайте а) скорость подачи в ванну нагрузкой 1200 А регенерируемого раствора, содержащего 245 г/л fj (804)3 250 г/л H2SO4, чтобы 90 % сульфата хрома анодно окислились до СгО , (Н2СГ2О,), если выход по току СгОд равен 85% б) часовую производительность ванны по СгОд в) удельный расход электроэнергии в расчете на 1 кг хромового ангидрида СгОд при среднем напряжении на ванне 3,5 В г) концентрацию Сга (504)3, СгОз и H2SO4 в вытекающем растворе. [c.141]

    В ванне хромирования нагрузкой 2500 А использован электролит, содержащий 350 г/л СгО , и 3,5 г/л Н2504. Ванна работает при катодной плотности тока 20 А/дм и выходе по току около 16 %. Толщина получаемого слоя хрома 1,5 мкм. Время загрузки и выгрузки подвесок с деталями 2,0 мин. Удельные потери электролита составляют 117 мл на 1 м покрытия. [c.218]

    Свойства сплавов. Сплавы сохраняют хорошую электрическую проводимость, теплопроводность и другие присущие металлам свойства. Однако их свойства не складываются как среднее арифметическое из свойств сплавляемых компонентов. Наоборот, температуры плавления сплавов ниже, чем у исходных металлов. Например, сплав Вуда плавится пр11 75 "С, а температура плавления самого легкоплавкого его компонента — олова 232 С. Сплав Деварда [50% (мае.) меди, 45% (мае.) алюминия и 5% (мае.) цинка] легко растирается в порошок и вытесняет водород из воды, хотя ни один из исходных металлов этим свойством не обладает. Очевидно, у сплавов появляются новые свойства, возникают новые качества. Как правило, сплавы более тверды, чем исходные металлы. Например, твердость латуни составляет 150 условных единиц, а исходных компонентов — меди и цинка — соответственно 40 и 50. Удельное электрическое сопротивление сплавов обычно выше, чем у исходных чистых металлов. Например, у нихрома [20% (мае.) хрома + 80% (мае.) никеля] сопротивление 110-10 , у хрома 15-Ю , а у никеля только 7 10" Ом-см. [c.267]

    Во всех случаях никель получается в виде пирофорного кристаллического порошка, и поэтому его хранят под слоем спирта или воды. Он обладает высокой пористостью и большой удельной поверхностью. Свежеприготовленный катализатор содержит 25-100 мл/г водорода, причем с потерей водорода активность катализатора снижается известное влияние на каталитическую активность оказывает остающийся после выщелачивания алюминий. Поэтому, изменяя условия выщелачивания алюминия и промывки катализатора, можно получать различающиеся по активности сорта скелетного никелевого катализатора. Кроме того, катализатор про-мотируется добавлением в сплав хрома, молибдена или кобальта в количестве 3-10 % от массы никеля, введением солей благородных металлов в ходе промывки катализатора или при гидрировании, а также небольших количеств щелочи или органических оснований при гидрировании. Например, продолжительность гидрирования [c.21]

    Из различных режимов катодного осаждения хрома из хромовой кислоты (см. с. 318) для электроэкстракции применяют режим, обеспечивающий максимальный выход по току и получение мягких осадков, т. е. электролиз ведут при низких температурах (25—36 °С), раствор содержит 250—350 г/л СгОз при соотношении СгОз Нг504= 100, к=2,8—8 кА/м . Выход по току—до 35%, напряжение 6—8 В, удельный расход электроэнергии 40000—70000 кВт-ч/т, т. е. значительно выше, чем при электролизе трехвалентных соединений хрома. [c.401]

    Важнейшие новые твердые катализаторы, ведущие к образованию стереорегулярных полимеров, можно классифицировать на четыре группы предварительно формованные окислы металллов перемеппой валентности на носителях с большой удельной поверхностью промотированные окиснометаллические катализаторы твердые катализаторы, приготовленные осаждением непосредственно в реакционной зоне из солей металлов переменной валентности и ме-таллорганических соединений предварительно обработанные осажденные катализаторы. Предварительно приготовляемые окиснометаллические катализаторы включают никель на угле [79], окись молибдена на окиси алюминия [79], молибдат кобальта на окиси алюминия [108] и окись хрома на алюмосиликате И8]. Активность этих катализаторов можно изменять в широких пределах введением различных промоторов, в частности, металлов I, II и III групп периодической таблицы, их гидридов и металлорганических производных [35]. Из осажденных важнейшими являются катализаторы, приготовляемые взаимодействием четыреххлористого титана с алкильными производными алюминия, бериллия, магния илп цинка [107]. Предварительно обработанные осажденные катализаторы включают соли металлов переменной валентности, восстановленные до низшей валентности, например, треххлористый титан, в сочетании с металлорганическими соединениями. [c.285]


Смотреть страницы где упоминается термин Удельное хрома: [c.338]    [c.76]    [c.173]    [c.490]    [c.554]    [c.9]    [c.85]    [c.194]    [c.135]    [c.106]    [c.27]    [c.276]    [c.212]    [c.107]    [c.22]    [c.402]    [c.286]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Диборид хрома удельное

Карбид хрома удельное

Нитрид хрома удельное

Удельное объемное электрическое сопротивление (в ом-м) резиновых клеев на основе неполярных каучуков с антистатической присадкой (соль хрома СЖК фр. Сх

Хром, удельная теплоемкость

Хрома удельное электросопротивление



© 2024 chem21.info Реклама на сайте