Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислот и оснований сила в кислых растворителях

    Ослабление силы кислот в уксусной кислоте обусловлено не только ее малой основностью, но и ее низкой диэлектрической проницаемостью. На это указывает то обстоятельство, что сила бромистоводородной кислоты больше, чем хлористоводородной, а также и то, что в муравьиной кислоте (диэлектрическая проницаемость равна 57), несмотря на ее еще более сильные протогенные свойства, галогеноводородные кислоты сильно ионизированы, даже при малых разбавлениях. В муравьиной кислоте, как в кислом растворителе, сильно диссоциированы также слабые основания. На такую роль диэлектрической проницаемости указывает близость констант диссоциации кислот, оснований и солей в уксусной кислоте (табл. 25). [c.280]


    Влияние растворителей на силу оснований подобно их влиянию на силу кислот. Неводные растворители уменьшают силу оснований, только кислые растворители с высокой диэлектрической проницаемостью усиливают их. Установлено также три типа дифференцирующего действия растворителей на силу оснований. Дифференцирующее действие растворителей на силу оснований выражено слабее, чем на силу кислот. [c.288]

    Если в кислых растворителях с высокой диэлектрической проницаемостью, например в муравьиной кислоте (см. табл. 24), происходит выравнивание силы оснований, в кислых растворителях с низкой диэлектрической проницаемостью происходит ослабление и некоторая дифференциация силы оснований. [c.354]

    Титрование в кислых растворителях солей органических кислот следует рассматривать как титрование оснований. В кислых растворителях роль оснований играют соли, образованные растворителем как кислотой, и соли всех кислот, сила которых слабее или равна кислотной силе растворителя. В уксусной кислоте основаниями являются большинство солей органических кислот. Поэтому раздельное титрование органического основания в смеси с солью органической кислоты следует рассматривать как титрование смеси органического и минерального основания. [c.459]

    Мы уже говорили, что титрование в кислых растворителях солей органических кислот следует рассматривать, как титрование оснований. В кислых растворителях роль оснований играют соли, образованные растворителем как кислотой, и соли всех кислот, сила которых слабее или равна кислотной силе растворителя. В уксусной кислоте основаниями являются большинство солей органических кислот. Поэтому [c.907]

    Влияние растворителей на силу оснований подобно их влиянию яа силу кислот. Неводные растворители уменьшают силу оснований, только кислые растворители с высокой диэлектрической проницаемостью [c.333]

    Соотносительное влияние химического и физического факторов особенно отчетливо проявляется в величинах констант диссоциации (точнее, протонизации) оснований в кислых растворителях. Вследствие того, что величина 8 уксусной кислоты значительно меньше, чем у воды, амины в этом растворителе в ряде случаев (пиридин, диэтиламин и др.) слабее, чем в воде, хотя сродство к протону у воды выше, чем у уксусной кислоты. Впрочем, в случае очень слабых (в воде) аминов происходит повышение их силы в уксусной кислоте по сравнению с водой. [c.228]


    Кислые растворители в силу своих сильных протогенных свойств оказывают существенное влияние на диссоциацию кислот и оснований. В среде этих растворителей уменьшается число веществ, проявляющих кислые свойства, и увеличивается число веществ, проявляющих основные свойства. Следовательно, в среде протогенных растворителей усиливается диссоциация электролитов по типу оснований. [c.25]

    Из приведенных данных следует, что кислые растворители усиливают силу оснований. Особенно усиливает силу основания муравьиная кислота (см. табл. 24). [c.281]

    Влияние основных растворителей аналогично по характеру, но противоположно но направлению действию кислых растворителей. Слабые кислоты в этих растворителях усиливаются, многие кислоты полностью превращаются в ониевые соли и становятся сильными кислотами. Число веществ, проявляющих основные свойства, уменьшается сильные в воде основания становятся слабыми и проявляют свои индивидуальные свойства. Таким образом, они нивелируют силу кислот и дифференцируют силу оснований. [c.282]

    ОТ рКа аминов в воде. Основность соединений в уксусной кислоте является линейной функцией соответствующих рКа в воде для соединений с (вода) менее 4,0 (для /г-броманилина рКа = 3,91). Для соединений более основных в воде, чем ниридин (р.йГ = 5,21), основности в уксусной кислоте остаются постоянными, так как эти основания в кислой среде сильно ионизированы. Выравнивание кислотно-основной силы растворителем обычно называют эффектом выравнивания. [c.18]

    По характеру влияния растворителей на относительную силу кислот, оснований и солей и по их способности изменять соотношения в силе электролитов все растворители делятся на две группы дифференцирующие и нивелирующие. К нивелирующим растворителям относятся такие растворители, в среде которых силы разных кислот (оснований, солей) уравниваются или, строго говоря, растворители, в которых соотношения в силе электролитов, характерные для их водных растворов, сохраняются. К дифференцирующим растворителям относятся такие растворители, в среде которых проявляется значительное различие в силе электролитов (кислот, оснований и солей). В этих растворителях соотношения в силе электролитов иные, чем в воде. Не следует смешивать классификацию растворителей на амфипротные, кислые и основные с классификацией на нивелирующие и дифференцирующие, так как эти классификации основаны на принципиально различных признаках. [c.22]

    Сопоставление [60] р/Св оснований в муравьиной, уксусной и пропионовой кислотах показывает, что сила электролитов в ряду кислых растворителей одной химической природы линейно зависит от обратной величины диэлектрической проницаемости растворителя (рис. 1).  [c.26]

    По отношению к основаниям увеличение кислых свойств растворителя приводит к нивелированию силы оснований. В среде муравьиной кислоты почти все основания нивелированы по силе, а в среде уксусной кислоты основания, рКъ которых в воде более [c.33]

    Возможность титрования солей по вытеснению кислот определяется также соотношением в силе титрующей и вытесняемой кислот. При оценке влияния растворителя следует руководствоваться уравнением (8, 30), однако в этом случае возможности осуществления титрования больше, так как выбор титрующей кислоты в большинстве случаев ничем не ограничен. Почти всегда можно подобрать в качестве титрующей такую кислоту, которая, в отличие ог вытесняемой, осталась бы в данном растворителе сильной, а вытесняемая стала бы слабой. Соли органических кислот в кислых растворителях титруются по вытеснению минеральной кислотой как основания. [c.881]

    Для определения силы очень слабых оснований Гаммет использовал последовательный ряд кислых растворителей, таких, как смеси соляной, азотной, хлорной или серной кислот с водой. Предположим, что в качестве эталонного основания В выбран индикатор, для сопряженной кислоты которого ВН+ известна термодинамическая константа диссоциации в воде Ка-Для определения силы несколько более слабого основания С в качестве растворителя может быть использована 10%-ная серная кислота. Основания В и С и растворитель подбирают таким образом, чтобы можно было измерить соотношения концентраций В/ВН+ и С/СН+ в выбранном растворителе. Тогда [c.100]

    На электропроводность растворов электролитов оказывает известное влияние диэлектрическая проницаемость е растворителя, поэтому с позиций теории Аррениуса естественно ожидать, что в растворителях с меньшей е СНзСООН должна проводить электрический ток хуже, чем в средах с высоким значением е однако растворы СНзСООН в нитробензоле (8=34,75) —растворителе с высоким значением е, вопреки ожиданию проводят электрический ток хуже, чем в бутил-амине (е=5,3) и в воде (е=78,3). Более того, в бутиламине уксусная кислота проявляет более кислые свойства, чем в воде сам бутиламин, не проводящий тока и характеризующийся слабыми основными свойствами в водной среде, ведет себя в растворе уксусной кислоты как более сильное основание. Это не означает, что степень диссоциации уксусной кислоты в среде бутиламина выше, чем в воде. Понятия о силе электролита в водной среде строятся, как известно, на представлении о полной или частичной диссоциации данного вещества на ионы. Применительно к неводным растворам эти понятия приобретают другой смысл, так как сила кислоты обусловливается способностью электролита проявлять в той или. иной степени протонно-донорные свойства по отношению к растворителю и ионизироваться с образованием промежуточных соединений — ионных пар (подробней см. ниже). [c.9]


    В то время как кислые растворители способны увеличивать силу оснований, на кислоты они оказывают обратное действие, уменьшая их силу. Так, соляная кислота, являющаяся сильной кислотой в воде, лишь частично диссоциирует в ледяной уксусной кислоте кислоты, являющиеся слабыми в воде, в кислом растворителе становятся еще более слабыми. [c.288]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Среди селективных растворителей большое значение имею слабые кислоты и кислоты средней силы, а также растворы соле дающих в водных растворах кислую и щелочную реакции. В под боре растворителей важную роль должны сыграть теории кисло и оснований, позволяющие логично подойти к получению смесе реагентов различной агрессивности, т. е. к основному свойству пр выборе селективных выщелачивающих агентов. Из этих же теори вытекает целесообразность применения неводных растворов в кг честве среды при выщелачивании минералов, что позволит усилр вать или ослаблять агрессивность кислот и щелочей. [c.86]

    Однако стабилизация анионов, образующихся из монокарбоновых кислот за счет сопряжения, слабее, чем стабилизация аниона малонового эфира (в которой участвуют две группы GOOR). Поэтому эфиры монокарбоновых кислот являются более слабыми кислотами, чем малоновый эфир равновесие, изображенное уравнением (1), сильно смещено влево. Для получения значительной концентрации аниона эфира необходимо применять (в качестве конденсирующих агентов) очень сильные основания. Таким образом, становится очевидным, почему реакция сложноэфирной конденсации не может протекать в присутствии воды и, как правило, даже в присутствии этанола, Соторые, будучи слишком кислыми растворителями, ограничивают силу основания, которое, согласно известному принципу (см. том I), не может быть сильнее, чем НО и соответственно С2Н5О.  [c.61]

    Кольтгоф и Брукенштейн [123], используя спектрофотометрический и потенциометрический методы исследования, определили константы диссоциации многих кислот в уксусной кислоте. Среди работ отечественных ученых по определению констант диссоциации электролитов в СНзСООН следует особо отметить труды Шкодина с сотрудниками [135]. В этой работе обобщен материал по исследованию электропроводности электролитов в кислых растворителях рассмотрено влияние их на силу кислот, оснований и солей изложена теория влияния кислых растворителей на диссоциацию электролитов дан прогноз применения кислых растворителей в аналитической химии. [c.50]

    Кислотное и основное поведение вещества в системах раство-ритель-растворенное вещество может быть сложным, даже если протекают только реакции переноса протонов по Бренстеду. Сила растворителя как кислоты и основания — это основной фактор, от которого зависит, образуется ли при растворении какого-либо вещества кислотный или щелочной раствор. Так, вещества ведут себя как основания (акцепторы протонов) скорее в ледяной уксусной кислоте, чем в этилендиамине. С другой стороны, сама уксусная кислота, растворенная в серной кислоте, ведет себя как основание, т. е. принимает протон, превращаясь в Н2ОАС+. Если растворитель проявляет и кислотные свойства, и основные, то образуются разные сопряженные пары кислота—основание. Так, сопряженная пара для воды, которая ведет себя как основание Н3+/Н2О, если вода ведет себя как кислота — Н2О/ОН . Следовательно, кислые и основные свойства молекулы растворителя нельзя рассматривать просто как противоположности (см. разд. 4-3). БоДа в значительной мере проявляет как кислотные, [c.69]

    Кроме классификации растворителей по донорно-акцепторным свойствам по отношению к протонам различают растворители по их влиянию на относительную силу кислот, оснований и солей, по их способности изменять относительную силу электролитов. По этому признаку растворители делятся на нивели-руюш,ие и дифференцирующие. К нивелирующим растворителям относят вещества, в среде к-рых кислоты, основания и соли уравниваются по своей силе или, строго говоря, растворители, для к-рых соотпошепия в силе электролитов, характерные для их водных р-ров, сохраняются. К дифференцирующим относят растворители, в среде к-рых проявляется значительное различие в силе электролитов (кислот, оснований и солей). Не следует смешивать классификацию растворителей на амфипротиые, кислые и основные с классификацией на нивелирующие и дифференцирующие, так как эти классификации растворителей основаны на принципиально различных признаках. Сила кислот, оснований и солей в среде какого-либо растворителя определяется гл. обр., с одной стороны, его химич. свойствами (кислотностью или основностью) и с другой — его физич. свойствами величинами диэлектрпч. проницаемости (ДП) и динольного момента молекул растворителя. В зависимости от химической природы растворителя и растворенного вещества растворитель может сильно влиять на диссоциацию электролита в одних случаях решающее значение оказывает кислотность или основность растворителя, в других — ДП. [c.100]

    В среде кислых растворителей усиливается диссоциация веществ по типу оснований нисло веществ, проявляющих основные свойства, увеличивается. Так, напр., в среде безводной муравьиной и уксусной к-т ряд органич. соединений, к-рые в водной среде не проявляют основных свойств, диссоциирует как основания. В среде безводной муравьиной к-ты ДП-57 основания диссоциируют в большей степени, чем в безводной уксусной к-те — ДП-6. В муравьиной к-те большинство оснований оказывается сильными имеино вследствие высокого значения ДП этого растворителя. В уксусной к-те сильные основания ослабляются вследствие низкого значения ДП этой кислоты слабые же основания проявляют более выраженный основной характер вследствие протогенных свойств растворителя. Т. обр., иротогенные растворители нивелируют силу оснований. В жидких гало-геноводородах, вследствие их сильно выраженных протогенных свойств, основные свойства проявляют даже спирты, альдегиды, кетоны, фенолы и карбоновые к-ты. [c.100]


Смотреть страницы где упоминается термин Кислот и оснований сила в кислых растворителях: [c.311]    [c.85]    [c.181]    [c.14]    [c.32]    [c.567]    [c.32]    [c.41]    [c.262]    [c.78]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Кислот и оснований сила кислот

Кислоты сила

Основания и кислоты

Основания сила

Растворители кислые

Растворители на силу кислот

Растворители оснований



© 2025 chem21.info Реклама на сайте