Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проба с большим содержанием растворителя

    Далее следует познакомить учащихся с методикой определения влаги по методу Дина-Старка. Методика основана на количественной отгонке воды от анализируемого вещества с бензолом, толуолом или ксилолом. Вода собирается в приемнике и определяется по объему. Учащиеся должны уметь собрать прибор Дина-Старка и подготовить его к работе. Основные части прибора колба для перегонки, насадка-приемник и обратный холодильник. Навеску вещества помещают в колбу, добавляют толуол, соединяют колбу с насадкой, а насадку — с обратным холодильником. Осторожно пускают в холодильник воду и начинают нагревать колбу на песчаной или водяной (если отгонку ведут с бензолом) бане. При кипении жидкости пары растворителя и воды конденсируются, стекают в приемник и там расслаиваются. По количеству воды, собравшейся в градуированном приемнике, рассчитывают содержание влаги в веществе. Приемник градуирован по 0.1 мл и для получения точных результатов в пробе должно быть не менее 0,5 г воды. Поэтому методику определения влаги по методу Дина-Старка применяют для анализа веществ с большим содержанием влаги. Органические вещества, применяющиеся в этом анализе, ядовиты и огнеопасны. Работы с бензолом, ксилолом и толуолом следует вести под тягой, вдали от открытого огня. [c.213]


    В первой серии опытов была поставлена цель установить общие закономерности и выявить трудности, которые могут возникать при анализе тиолов в присутствии серы в щелочном (обыч ном) растворителе. Для этого готовили ряд смесей, содержавших пентантиол и элементную серу в различных соотношениях. Навески смесей растворяли в щелочном растворителе для титрования и титровали через 5, 30, 60 и 120 мин после растворения пробы. Результаты анализов представлены в табл. 18.6. Чем больше соотношение содержаний элементной серы и тиола и чем продолжительнее время выдерживания пробы в щелочном растворителе, тем ниже кажущееся содержание тиола. Если количество элементной серы эквивалентно количеству тиола или больше, содержание всего титрующегося вещества находят по первому скачку потенциала. При преобладании в смеси тиола наблюдаются два скачка потенциала. В растворах, доступных действию воздуха, связь первого скачка потенциала с содержанием элементной серы, по-видимому, ие носит характера прямой пропорциональности. [c.552]

    Операция Б (определение вторичного и третичного амй-нов). Во взвешенной склянке берут навеску пробы, содержащую около 0,02 моль вторичного и третичного аминов. Содержимое склянки смывают смесью этиленгликоля и изопропанола в стакан емкостью 150 мл и в стакан приливают еще смесь растворителей до объема около 50 мл. Затем вносят 5 мл салицилового альдегида (если количество первичного амина превышает 0,035 моль альдегида, следует брать больше), смесь тщательно перемешивают и оставляют при комнат ной температуре на 30 мин. Полученный расгвор титруют хлористоводородной кислотой, пользуясь рН-метром. Конечную точку титрования определяют графически. Суммарное содержание вторичного и третичного аминов Б (в моль/г) вычисляют, как указано в п. А. [c.450]

    Методика определения следующая. В пробирку диаметром 25 мм и высотой 150 мм заливают анализируемый растворитель. Предварительно в отдельной пробе определяют содержание в этом растворителе ацетона по методу, описанному выше. Пробирку закрывают пробкой, в которую вставлены мешалка и термометр с ценой деления 0,2 °С. Пробирку вставляют на пробке в пробирку большего диаметра (воздушная муфта), и все опускают в стакан, который служит баней для поддержания определенной температуры. В баню заливают теплую воду (температура 20 °С) и начинают ее медленно охлаждать со скоростью 2 °С в 1 мин, при постоянном перемешивании содержимого пробирки. Отмечают по термометру момент появления облачка мути, полностью закрывающее ртутный шарик термометра. Эту температуру засекают и считают началом выпадения влаги из раствора (температура помутнения). Пробирку вынимают из муфты и, нагревая рукой, дают мути раствориться, после чего вставляют обратно в муфту прибора и повторяют определение. [c.79]


    Количество неподвижной фазы не должно быть слишком большим. Но вместе с тем при очень небольших количествах неподвижной фазы размер пробы, которую можно ввести, чрезвычайно мал. Далее, заполняющий колонку материал может быть недостаточно инертным и проявлять адсорбционные свойства по отношению к растворенным веществам. Содержание растворителя, равное 15—20%, обычно является удовлетворительным. [c.56]

    Вязкие пробы с большим содержанием ароматических углеводородов и серы предварительно разбавляют растворителем, не содержащим серы. [c.332]

    Правда, этим весовым методом анализа возможно определять только относительно большие содержания ниобия в образцах. Если ниобия в пробе немного, его отделяют от остальных элементов другими, более тонкими методами. Самый распространенный из них — экстракция органическими растворителями. Современными физико-химическими методами можно определить присутствие ниобия в самых различных образцах, даже если количество элемента № 41 в смеси измеряется тысячными долями процента. [c.208]

    В таблице приведены подвижные растворители и величины / / анализируемых препаратов. Количественное определение можно проводить только до 40—50 мкг препарата в пробе. При большем содержании препарата пятна на пластинках получаются размытыми и это затрудняет сравнение их со стандартами. В этом случае следует использовать пропорциональные части анализируемых экстрактов. Чувствительность метода 5—10 мкг в пробе. [c.156]

    Особо рассматривают вопрос о хранении и консервации пробы. Допустимый промежуток времени между отбором и анализом зависит от состава пробы, природы определяемых компонентов и условий хранения пробы. Чем больше вероятность изменения содержания определяемых компонентов, тем скорее должен быть проведен анализ если невозможно провести анализ сразу после отбора, то пробу консервируют. Некоторые определяемые вещества устойчивы длительное время и не требуют особых условий консервации (резкое охлаждение, изменение pH среды, добавление стабилизирующих веществ). В отдельных случаях для сохранения определяемого компонента его экстрагируют органическими растворителями или сорбируют на различных твердых веществах. Для получения достоверных результатов пробу природной воды, например, анализируют обычно в течение 1-2 ч после отбора. Пробы можно стабилизировать на несколько часов охлаждением до О °С и на несколько месяцев — резким охлаждением до - 20 °С. Для консервирования определяемых компонентов добавляют разные консерванты, чаще всего это кислоты и вещества, образующие комплексные соединения. [c.43]

    Идентификацию и количественное определение ж-фениленди-амина проводят при сравнении величин Rf и интенсивности окраски пятен пробы и свидетеля (стандартного раствора л<-фенилендиами-на). Для этого справа и слева от пробы на ту же пластинку и для каждой пробы в отдельности наносят раствор свидетеля в зависимости от предполагаемого содержания ж-фенилендиамина, но не более 20 мкг. При большем содержании ж-фенилендиамина в пробе ее следует соответственно разбавить. Пластинку с, нанесенными растворами помещают в камеру для хроматографирования, на дно которой налит диэтиловый эфир слоем не более 0,5 см. Высота подъема растворителя 10 см. Камера используется без предварительного насыщения. Затем пластинку вынимают, отмечают линию ф ронта и сушат на воздухе до полного испарения растворителя. [c.154]

    Высокочастотная полоса 3680 см лежит в области спектра, свободной от полос поглощения растворителя, и очень удобна для проведения определений. Метод спектрофотометрического определения следов воды с разведением проб имеет и ряд других существенных преимуществ. При использовании этого метода значительно уменьшается погрешность, связанная с неточностью изготовления кювет, так как для разбавленных растворов применяются кюветы с большой толщиной слоя 1—3 мм. Совершенно устраняются погрешности, связанные с изменением соотношения ассоциаций различного типа молекулами воды и органического растворителя все возможные типы ассоциаций заменены одним КВ...НОН...А. Для растворителей, энергии водородных связей которых с водой имеют сводные значения, интенсивность и положение указанной одиночной полосы совпадают, что позволяет анализировать смеси органических растворителей, не учитывая соотношение между концентрациями компонентов смеси. Положение и интенсивность рассматриваемой полосы значительно меньше зависят от температуры раствора, чем полос поглощения воды в неразбавленных растворах. Результаты определений малых содержаний воды этим методом приведены в табл. 27. [c.158]

    Необходимость в количественной обработке раствора пробы можно исключить, если для определения меченого производного применять метод обратного изотопного разбавления. Для этого после превращения анализируемого амина в замещенный сульфамид в раствор добавляют известное количество нерадиоактивного производного, много большее количества меченого производного, присутствующего в растворе. Для этого берут минимальное количество нерадиоактивного производного, достаточное для последующего проведения операций очистки. Затем, применяя ионообменные смолы [79] или экстракцию [81], из раствора удаляют избыток реагента, не обращая внимания на небольшие потери анализируемого соединения. После этого образовавшееся производное очищают путем перекристаллизации до получения постоянного значения удельной радиоактивности [81]. Однако более строгим критерием чистоты соединения в данном растворителе является совпадение значений удельной радиоактивности фильтрата и полученного продукта [83]. Хроматографического разделения в таком анализе не требуется, и удельные радиоактивности образовавшегося производного и радиореагента измеряют, используя стандартный метод. Содержание амииа в пробе в этом случае вычисляют по формуле [c.309]


    Целесообразность применения анализаторов непрерывного действия для определения хлоридов в нефти в большинстве случаев сомнительна, так как эксплуатация связана с сравнительно большим расходом (порядка 20 л/сутки) дорогого растворителя. Использовать же достоинства анализатора непрерывного действия в условиях весьма инерционного процесса, каким является процесс обессоливания нефти, едва ли возможно. Однако следует иметь в виду, что при анализе такого сравнительно неоднородного вещества, как нефть, непрерывный метод измерения имеет еще одно преимущество перед непрерывно-циклическим. Уменьшается вероятность дополнительных погрешностей вследствие несоответствия отбираемой пробы средней величине содержания, оли за время цикла измерения. [c.37]

    Образцы неорганических веществ переводят к. раствор различными способами в зависимости от того, будет ли затем раствор использоваться для анализа на содержание катионов или анионов. Для систематического анализа на катионы исследуемое вещество переводят в раствор, используя в качестве растворителей воду, а если оно нерастворимо в ней, то — минеральные кислоты (соляную, азотную) или окислители в кислой среде (царскую водку, концентрированную НС1 + бромную воду). Действие этих растворителей испытывают последовательно, причем переход к следующему растворителю совершают только в том случае, если вещество не растворяется в предыдущем. При этом сначала проверит растворимость в разбавленной кислоте, а затем в концентрированной. Растворимость в каждой кислОте проверяют прежде всего на холоде, а потом уже при нагревании. Используют обычно малые пробы- веществ,а (около 0,01 г) и растворителя (0,5—1 мл) после установления подходящего растворяющего реагента может растворяться и большая проба (примерно 0,1 г в случае применения методов полумикроанализа). [c.184]

    Наиболее распространенным, хотя и трудоемким методом определения НП является весовой метод, признанный арбитражным. Сущность его сводится к экстракции нефтепродуктов из стоков. хлороформом или четыреххлористым углеродом, отгонке растворителя, последующему растворению остатка в гексане, удалению полярных соединений и гравиметрическому определению растворенных в гексане веществ. Диапазон измерения НП составляет от 0,3 до 3 мг/л. При большем содержании нефтепродуктов уменьшают объем пробы. Для анализируемых проб, содержащих менее 0,3 мг/л нефтепродуктов, следует ввести определение с использованием газожидкостной хроматографии (ГЖХ), основанной на экстракции нефтепродуктов из сточных вод растворителем (н-гексаном, пентаном, четыреххлористым углеродом) и последующем газохроматографическом исследовании [198]. Этим методом можно опре/ елять суммарное содержание, а также типы нефтепродуктов в сточных водах. Чувствительность при применении пламенно-ионизационного детектора - 0,1 мг/л всех углеводородов, 0,005 мг/л каждого углеводорода. Относительная ошибка определения 3—10%. Селективность нефтепродуктов в пробе производится по температурам кипения углеводородов, а также числу атомов в молекуле. В зависимости от используемого растворителя воз- [c.144]

    Экстракт пипеткой наносят на хроматографическую пластину. Диаметр пятна не должен превышать 1 см. Колбу дважды ополаскивают небольшим количеством хлористого метилена (0,1—0,2 мл), и эти растворы наносят в ту же точку на пластину. Справа и слева от пробы на ту же пластину наносят раствор свидетеля в зависимости от предполагаемого содержания и-фенилендиамина, но не более 20 мкг. При большем содержании лг-фенилендиамина в пробе ее следует соответственно разбавить. Затем пластину помещают в камеру для хроматографирования, заполненную на 0,5 см от дна диэтиловым эфиром. Высота подъема растворителя — 10 см. Далее пластину сушат и опрыскивают 20%-ным спиртовым раствором 2,6-дихлорхннон-4-хлоримида, л -фенилендиамин дает при этом сине-голубые пятна [Rj = 0,44). [c.334]

    Для малодымных порохов наиболее пригодна германская проба нагреванием при 132°, а из количественных способов—проба Bergman n a и J u п к а, для которой берут 5 г пороха, измельченного, в случае надобности, до величины зерна 0,5—1 мм. Порох предварительно высушивают в течение 48 часов в вакууме над серной кислотой. По Brunswig y предельным количеством считается 8 см N0 за 3 часа.э - При применении манометрического способа nopoxa, содержащие сравнительно большое количество летучих растворителей, естественно показывают в начале опыта более быстрое повышение давления, чем пороха с незначительным содержанием растворителей. Однако, этот мешающий фактор исчезает в течение дальнейшего исследования, и тогда повышение давления становится мерой скорости разложения пороха. [c.708]

    Простые эфиры целлюлозы. Обычно имеют светлую окраску по = 1,47 плотность 1,10—1,25 г/см . Растворимость этилцел-люлозы тем лучше, чем больше содержание этоксильных групп. Метилцеллюлоза растворима в горячей воде и нерастворима в большинстве прочих растворителей. Проба IV дает запах жженой бумаги (с примесью запаха бензальдегида для бензилцел-люлозы). Проба XIV — слабо положительная. [c.66]

    Учащиеся должны уметь собирать прибор Дина — Старка и подготавливать его к работе. Основные части П жбора колба для перегонки, насадка-приемник и обратный холодильник. Навеску вещества помещают в колбу, добавляют толуол, соединяют колбу с насадкой, а насадку - с обратным холодильником. Осторожно пускают в холодильник воду и начинают нагревать колбу на песчаной бане или водяной (если отгонку ведут с бензолом). При кипячении жидкости пары растворителя и воды конденсируются, стекают в приемник и там охлаждаются и расслаиваются. По количеству воды, собравшейся в градуированном приемнике, рассчитывают содержание влаги в веществе, принимая массу 1 мл воды равной 1 г. Приемник градуирован по 0,1 мл, для получения точных результатов в пробе должно быть не менее 0,5 г воды. Поэтому методикой определения влаги по методу Дина - Старка пользуются для анализа веществ с большим содержанием влаги. [c.245]

    Навеску образца 1—3 г растворяют в HNO3, раствор упаривают досуха, остаток растворяют в 20 мл 5 N HNO3 и экстрагируют уран в несколько приемов 200 мл смеси трибутилфосфата и керосина (1 10). Водную фазу упаривают досуха, остаток растворяют в 10 мл 1%-ного раствора НС и фотометрируют. При большом содержании стронция в пробе последний отделяют на ионообменной смоле, в случае же допустимых количеств стронция в полученные результаты вводят поправку на фон. Чувствительность определения 0,001 мкг Ы/мл, которая может быть в 4—5 раз увеличена при использовании органических растворителей. [c.148]

    В классической колоночной хроматографии содержание элементов во фракциях элюата устанавливают различными методами неорганического анализа. Поскольку разделение ионов, а также соединений требует сравнительно больших объемов растворителя, то при разделении методом колоночной хро.матографни часто наблюдаются значительные эффекты разбавления, и в результате для количественного анализа следов в элюатах (без дополнительного обогащения) пригодны лишь высокочувствительные способы обнаружения. В табл. 37 приведена сводка таких методов, в которых колоночная хроматография сочетается с различными способами обнаружения и служит для удаления соединений, мешающих определению (или даже основного компонента), для разделения фракций, содержащих отдельные элементы, или для обогащения сильно разбавленных проб. [c.101]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    По методам А5ТМО-3230-73, УР-77172 и японскому стандарту ]У8К-2601-1980 пробу нефти кипятят вместе с растворителем и водой. Водный раствор подвергают индикаторному или потенциометрическому титрованию. В качестве растворителя используют смесь толуола, спирта и ацетона. Чтобы предотвратить кипение раствора с толчками, внутрь колбы следует вмонтировать многопористый цеолит или вводить в нее азот. При содержании соли в пробе не больше 20 мг/л применяют нитрат серебра N/50, а для солей ниже 20 мг/л - N/200. [c.142]

    Сэндерс и Лэмберт отмечают низкий эквивалент газовой сажи, колеблящийся, как видно из таблицы, в пределах от 0,5 до 0,8%. Между тем, этот показатель не такой уж низкий, как это кажется на первый взгляд. Надо сказать, что газовая сажа обладает исключительно высокой окрашивающей способностью, во всяком случае большей, чем многие другие красящие вещества. Эквивалент пробы грязи, взятой, например, в Сент-Луисе, равен 0,5%, а содержание компонентов, растворимых в эфире, — 12,8%. Если эти компоненты разбавить одним литром такого растворителя, как перхлорэшлен, то может быть получена смесь, обладающая высоким загрязняющим свойством. Согласно результатам опыта, произведенного государственным институтом химической чистки, отражательная способность белой хлопчатобумажной ткани и шерсти, обработанных раствором перхлорэтилена, содержащего 0,5 г,1л углерода и 12,5 г/л минерального масла, уменьшилась у первой до 18,9%, а у второй до 14,5%. [c.20]

    Калибровка по стандартным образцам известного состава в случае прямого АРП твердых полимеров применяется редко, поскольку изготовление таких твердых образцов с различным и точно известным содержанием летучих примесей очень затруднительно или невозможно. Чаше всего ограничиваются приблизительными оценками, создавая условия, благоприятные для диффузии большей части летучих примесей из образца — увеличивая температуру и объем газовой фазы и пренебрегая оставшейся в полимере долей примесей. Такой подход вполне оправдывает себя в области, где АРП твердых образцов получил наибольшее распространение, для определения остаточных растворителей и мономеров в полимерных пленках, применяемых для упаковки нишевых продуктов. Оптимальные условия анализа находят эмпирически, причем в простейших вариантах отбор проб воздушной среды над образцами осуществляют обычными медицинскими шприцами без строгого термостатирования и учета колебаний давления, но соблюдая тот же режим работы и при построении калибровочных графиков. Примером может служить методика определения следов бензина в одном из распространенных [c.145]

    Условия анализа. Отбирают навеску 1—2 г с точностью 0,01 г в стакан на 50 мл, приливают 23 мл ацетона и 7 мл воды. Титруют при перемешивании на рН-метре с парой электродов стеклянным и хлорсеребряным 0,1-к. апирто-вадным (1 1 по объему) раствором НС1 со значением pH от исходного, меньще 9, до 2,45. Если pH исходный больше 9, значит а пробе содержатся минеральные примеси основного характера. В таком случае пробу титруют до рН=9ч-6, но не ниже, и. расход титранта в расчет не принимают. После оттитровывания примесей определяют основания с, pH в пределах от 9—6 до 2,45. Содержание оснований вычисляют с учетом расхода титранта на растворитель (23 мл ацетона и 7 мл воды) до рН = 2,45. Молекулярная масса оснований принимается равной 95-Метод разработан на исжусственных смесях и проверен способом добавок и на рабочих пробах. Ниже даны результаты анализа продуктов различных предприятий, % (по массе). [c.138]

    На рис 5-10 приведена схема типичной системы ВЭЖХ-МС с движущейся лентой, выпускаемой фирмой р1п1 ап [19] Элюат, выходящий из хроматографической колонки, непрерывно наносится на движущуюся полиимидную ленту (фирмы Кар ) шириной 3 мм После испарения растворителя лента протягивается через вакуумношютные сальники с постоянной скоростью (2 - 3 см/с) в ионизационную камеру, где исследуемые компоненты пробы, оставшиеся на ленте, быстро испаряются под воздействием электрического нагревателя Остатки анализируемых веществ удаляются с ленты при помощи второго нагревателя Ионизация анализируемых веществ осуществляется как методом электронного удара, так и химически Однако в некоторых случаях возникают серьезные трудности вследствие термического разложения термолабильных веществ на ленте еще в процессе удаления растворителя Емкость ленты по отношению к растворителю изменяется в зависимости от природы последнего При больших объемных скоростях иногда удается добиться хороших результатов, прибегая к делению потока Прн увеличении содержания воды в подвижной фазе емкость ленты уменьшается н может достигать всего 0,05 мл/мин В таких случаях более эффективно нанесение пробы на ленту в виде аэрозоля [20] [c.133]

    Кроме того, все большее распространение получают масс-опектрометры, основанные на использовании различия масс молекул и атомов различных вещ,еств, и хроматографы, в которых сложные газовые смеси разделяются вследствие различия скоростей движения компонентов. Действие хроматографов основано на сорбционном способе разделения пробы газовой смеси на компоненты при пропускании ее совместно с потоком вспомогательного газа (газа-носителя) через слой поглощающего вещества (сорбента) и поочередном измерении содержания каждого компонента (электрическим методом). Применяются два вида хроматографии адсорбционная и распределительная. В первом случае разделение газовой смеси основывается на различии адсорбционных свойств ее компонентов и происходит в колонке, заполненной твердым пористым веществом (адсорбентом), в качестве которого часто применяют мелкий активированный древесный уголь, силикагель и алюмогель. Во втором случае процесс разделения смеси связан с распределением ее компонентов по зонам в результате различной растворимости отдельных газов в жидкости (растворителе), равномерно нанесенной на инертное твердое тело (носитель), заполняющее колонку. Растворителем обычно служит дибутилфталат, а носителем— силикагель. В обоих случаях, газом-носителем является азот или воздух. Адсорбционная хроматография находит применение для разделения смеси низкокипящих веществ (Иг, СО, СН4 и др.), а распределительная — высококппя-щих, таких, как этилен С2Н4, этан С2Н6 и др. [c.77]

    Опыты проводились в следующих условиях температура в реакционной смеси 220° С, рабочее давление 200 ат, растворитель — цетан, концентрация сернистых соединений в растворе — 0,5 молъ л анализ на содержание серы проводился в пробах раствора. В случае гидрогенолиза дибензтиофена, дифенилтиофена и тетрафенилтиофена растворителем служил циклогексан и содержание серы определялось в продуктах реакции после предварительной отгонки растворителя до постоянного веса. Такое видоизменение методики применительно к трем последним соединениям было вызвано тем, что соединения эти кристаллические и очень плохо растворяются в цетане. В силу этого не удавалось приготовить растворы нужной концентрации (0,25 моль/л) — по охлаждении раствора выпадали кристаллы этих соединений, а это затрудняло анализ продуктов реакции. Кривые кинетики гидрогенолиза, построенные по экспериментальным данным всех опытов, указывают на то, что реакция имеет нулевой порядок в области больших концентраций. К концу опыта, когда концентрация сераорганического вещества становится очень низкой, наблюдается отклонение от нулевого порядка. Такое течение реакции характерно для адсорбционного катализа, когда имеют дело с сильной адсорбцией и поверхность насыщена при рассматриваемых давлениях. [c.400]


Смотреть страницы где упоминается термин Проба с большим содержанием растворителя: [c.345]    [c.448]    [c.187]    [c.135]    [c.276]    [c.400]    [c.190]    [c.495]    [c.67]    [c.156]    [c.423]    [c.156]    [c.423]    [c.213]    [c.484]    [c.281]    [c.210]    [c.147]    [c.131]   
Газовая хроматография с программированием температуры (1968) -- [ c.231 ]




ПОИСК







© 2025 chem21.info Реклама на сайте