Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель в хроматографии активность

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]


    Силикагели. Адсорбционная активность силикагелей связана с находящимися на их поверхности гидроксильными группами. Силикагели относятся к числу сильно полярных адсорбентов. Поэтому при анализе смеси насыщенных и ненасыщенных углеводородов непредельные углеводороды вымываются после предельных, имеющих тоже число атомов углерода в молекуле. Следовательно, если имеется смесь углеводородов Сг—Сз, то компоненты этой смеси при разделении на силикагеле будут выходить в следующей последовательности этан — этилен — пропан — пропилен. Существуют различные марки силикагелей, отличающихся по адсорбционным свойствам и, следовательно, по структурной характеристике. В практике газовой хроматографии нашли применение силикагели кем, АСМ, ШСК, АСК и др. [c.23]

    Хроматография на окиси алюминия. При проведении препаративных работ хроматография на окиси алюминия имеет ряд преимуществ по сравнению с хроматографией на силикагеле требуются меньшие объемы растворителей, скорость тока через колонку выше. Для хроматографии фосфолипидов используют окись алюминия IV степени активности. Ее получают путем активации коммерческой окиси алюминия при 110°С в течение 12 ч, после чего на каждые 100 г адсорбента добавляют 10 мл воды и встряхивают смесь в закрытом сосуде в течение 2 ч. При выделении больших количеств фосфолипидов используют стеклянные колонки с отношением диаметра к длине, равным 1 2,5, в которые помещают до 1000 г адсорбента. При работе с меньшим количеством адсорбента, до 100 г, применяют колонки с отношением [c.70]

    При разделении масляной фракции с помощью хроматографии на силикагеле или активной окиси алюминия сернистые соединения выделяются вместе с ароматическими углеводородами и смолами (табл. 27). [c.51]

    В газо-адсорбционной хроматографии (ГАХ) в качестве поглотителей используют такие адсорбенты, как пористые кристаллы — цеолиты, ряд тонкопористых аморфных адсорбентов (силикагели, алюмогели, активные угли и полимеры). Типы сорбентов, используемых в ГАХ 1) непористые адсорбенты 2) однороднопористые адсорбенты (размеры всех пор близки) 3) тонкопористые адсорбенты (размер пор меньше 0,5 нм) 4) неоднородно-пористые адсорбенты. [c.234]

    Неподвижные твердые фазы. В газовой адсорбционной хроматографии в качестве НФ чаще всего используют силикагель, оксид алюминия, активные угли и молекулярные сита. Адсорбционные характеристики оксида алюминия, силикагеля и угля в значительной степени зависят от исходного сырья, способов приготовления и предварительной обработки. В современной аналитической ГХ эти сорбенты применяют гораздо реже, чем сорбенты с нанесенной жидкой фазой. Более подробно сведения о силикагеле и оксиде алюминия приведены в разделе, посвященном жидкостной хроматографии. Активные угли — неполярные сорбенты с развитой пористой структурой. Они избирательно поглощают углеводороды, ароматические соединения, спирты, эфиры. [c.620]


    Для эффективной очистки технического этилена мо5<но применять метод газо-адсорбционной хроматографии на силикагеле или активной окиси алюминия, так же как и,для очистки этана, см. стр. 314. [c.338]

    На ранней стадии развития газовой хроматографии (50—60-е годы) использовались лишь насадочные колонки, представляющие собой стальные или стеклянные трубки длиной 1—5 м и внутренним диаметром 3—4 мм. Колонки заполнялись адсорбентом (адсорбционный вариант газовой хроматографии) — активным углем, силикагелем, оксидом алюминия и др. или сорбентом (газо-жидкостный вариант газовой хроматографии). Сорбент состоял из твердого диатомитового носителя (похожего на размолотый кирпич), на который наносилась в количестве 5—20% НЖФ (вязкая органическая жидкость). Эффективность таких колонок составляла несколько тысяч т.т., и они не позволяли добиться полного разделения многокомпонентных смесей органических соединений, какими являются смеси веществ, загрязняющих воздух, воду и почву. [c.19]

    В качестве сорбентов применяют силикагель марки КСК, оксид алюминия для хроматографии с активностью степени II или III, силикат магния. Широко применяют готовые пластины типа Силуфол-254 и др. [c.240]

    Элюотропные серии обнаруживают гораздо большее постоянство (т. е. меньшую чувствительность к типу образца) в адсорбционной хроматографии, чем в распределительной. Приведенные в табл. 4.2 значения г° определяют одну такую серию для адсорбции на окиси алюминия. Малоактивные растворители имеют низкие значения г°, а активные — большие значения г°. Абсолютные значения параметров активности растворителя меняются при переходе от одного сорбента к другому (например, при переходе от окиси алюминия к силикагелю), относительная активность при этом не меняется (см. обсуждение в работе [8]). В случае смешанных растворителей зависимость е° от состава в отличие от зависимостей 6, б<г, бо и т. д. имеет нелинейный характер. Внутри адсорбированной фазы обычно концентрируется активный растворитель, так что е° для смеси двух растворителей Л и В следует по закону, иллюстрированному на рис. 4.2. Как только концентрация более активного компонента —растворителя В —превысит 0%, е° начинает очень быстро расти с увеличением концентрации В (%В), через некоторое время рост е° замедляется. В адсорбционной хроматографии значениями е° можно руководствоваться при выборе растворителя нужной активности, так же как значениями б руководствуются при выборе растворителя в распределительной хроматографии. [c.110]

    В распределительной хроматографии рекомендуются носители силикагель, кизельгур, окись алюминия для хроматографии и др. Силикагель называют кислым носителем, окись алюминия — основным , подразумевая под этим не измеренное значение pH, а свойства сорбента по отношению к сильной кислоте или основанию, удерживаемым в точке старта вместе с нейтральным растворителем. Чтобы увеличить активность сорбента, на него воздействуют режимом сушки (воздушно-сухие слои, более длительное время экспонированные на воздухе, активные слои), а также с помощью специальных добавок. [c.90]

    Для ступенчатого градиентного элюирования хроматографических групп была использована возможность разделения смеси элюентов по способу фронтальной хроматографии [3, 5], согласно которому разделение элюентов должно идти по схеме, представленной на рис. 1. При разделении смеси, например, из трёх растворителей различной адсорбционной активности в предварительной колонке (см. рис. 1, а) первым из колонки выйдет некоторое количество наиболее слабо адсорбирующегося растворителя А в чистом виде, затем смесь растворителя А с более сильно адсорбирующимся растворителем В и, наконец, исходная смесь растворителей А, В и С. Поступая в разделительную колонку, растворитель А вытесняет с силикагеля слабо адсорбирующуюся часть образца (компонент а) и движется вместе с ним к выходу из колонки. Затем по этой же схеме десорбируются компоненты Ь и с. [c.6]

    Элюотропные серии обнаруживают гораздо большее постоянство (т. е. меньшую чувствительность к типу образца) в адсорбционной хроматографии, чем в распределительной. Приведенные в табл. 4.2 значения е° определяют одну такую серию для адсорбции на окиси алюминия. Малоактивные растворители имеют низкие значения е°, а активные — большие значения е°. Абсолютные значения параметров активности растворителя меняются при переходе от одного сорбента к другому (например, при переходе от окиси алюминия к силикагелю), относительная активность при этом не меняется (см. обсуждение в работе [8]). В случае смешанных растворителей зависимость г° от состава в отличие от зависимостей [c.110]

    За последние 15—20 лет бурно развивалась хроматография — способ разделения смесей при помощи сорбентов в динамических условиях. Динамические условия осуществляются прохождением потока смеси через хроматографическую колонну с сорбентом. Для.глубокой очистки особо важны газо-адсорбционная и газо-жидкостная хроматография. В первом случае в качестве сорбента применяют силикагель, алюмогель, активные угли, пористые стекла и т. д. Во втором сорбентом служит тонкая пленка жидкости на инертном твердом носителе. [c.66]


    Для определения РТФ, так же как и для ММР, используют жидкостную хроматографию, только с той разницей, что носитель в случае определения РТФ активен по отношению к функциональным группам и не активен по отношению к полимерной цепи. При определении РТФ можно применять ступенчатую десорбцию с активной насадкой растворителями с возрастающей долей полярного компонента и жидкостную хроматографию на силикагеле с использованием смешанного растворителя постоянного состава [c.435]

    В качестве адсорбентов (поглотителей) применяют активную окись алюминия, силикагель, активные угли, а в последнее время стали применять богатый ассортимент ионитов как природных, (цеолиты), так и синтетических (ионообменные смолы). Кроме того, все шире начали применяться в определенных процессах и жидкие поглотители распределительная хроматография), которые вводят в соответствующий твердый носитель (например, в ионообменные смолы путем набухания их в жидком поглотителе). Иногда в состав поглотителей вводят вещества, образующие соединения с некоторыми из компонентов разделяемой системы это часто оказывается эффективным средством усиления разделяющей способности поглотителей. [c.373]

    Хроматографический анализ высококипящих фракций. Для анализа высококипящих фракций применяется жидкостная адсорбционная хроматография. В качестве сорбентов используется силикагель марки АКС, активная окись алюминия и активированный уголь. На силикагеле метано-нафтеновая часть хорошо отделяется от ароматических углеводородов, а последние — от смолистых веществ. [c.69]

    Сорбционную способность бентонитовых глин по ароматическим углеводородам также подтверждают результаты, полученные при исследовании хроматографического разделения смеси гептана и бензола, при этом активность красной бентонитовой глины в естественном виде по бензолу составляет 2,25 мл бензола на 100 г адсорбента, активность этой глины, модифицированной нанесением на поверхность 10 мае. углерода, - 10,0 мл в сравнении с активностью по бензолу используемого в хроматографии силикагеля марки КСМ - 11,0 мл. [c.105]

    Газ-носитель обычно содержит некоторые количества примесей воды, кислорода, органических соединений и др. Поэтому часто проводят его предварительную очистку, устанавливая перед входом в хроматограф осушительную колонку, заполненную силикагелем, активным углем или молекулярными ситами, колонку с катализатором для удаления кислорода или предпринимают другие меры по очистке. [c.87]

    Газ-носитель подвижная фаза, В качестве газа-носителя применяют азот, воздух, гелий, водород и реже другие газы, не вступающие в реакцию с исследуемыми газами и наполняющими колонку сорбентом. В качестве наполнителя колонок (неподвижная фаза) могут быть применены указанные ранее адсорбенты — активированный уголь, молекулярные сита (искусственные цеолиты), силикагели, окись алюминия — или специальные жидкости типа высококипящих углеводородов, нанесенные на поверхность малоактивного адсорбента. В Советском Союзе в качестве такового применяют обычно измельченный инзенский кирпич, выпускавшийся ранее под маркой ИНЗ-600, или вновь разработанный диатомовый носитель марки ТНД-ТС-М. За рубежом выпускают аналогичные адсорбенты под различными марками (стерхамол, хромосорб и др.) Такие адсорбенты, на которые наносится тонкий слой жидкости, назьшают носителями (не смешивать с газом-носителем). Их роль состоит в том, чтобы создать большую поверхность для жидкости, являющейся активной неподвижной фазой. Применение в газовой хроматографии вместо активных адсорбентов жидкостей, обладающих различной растворяемостью газов, было предложено Джеймсом и Мартином в 1952 г., что резко увеличило возможности и улучшило метод газовой хроматографии. [c.67]

    Газоадсорбционная хроматография (ГАХ) включает все методические варианты газовой хроматографии, в которых неподвижной фазой является активное дисперсное твердое тело (адсорбент) древесный уголь, силикагель, графитированная сажа и др. [c.7]

    В адсорбционной хроматографии распределение веществ по фазам вызывается адсорбцией их на твердых адсорбентах, представляющих собой неподвижную фазу. В качестве адсорбентов чаще всего применяют активный уголь, оксид алюминия, силикагель. Подвижная фаза может быть как жидкой, так и газообразной. [c.255]

    В качестве адсорбентов в хроматографии используется специальная фильтровальная бумага, активная окись алюминия, силикагель, активированный уголь, глины, окиси магния и кальция, углекислый кальций, иониты и др. [c.365]

    Разделение методом адсорбционной хроматографии осуществляется в результате взаимодействия вещества с адсорбентами, такими, как силикагель или оксид алюминия, имеющими на поверхности активные центры. Различие в способности к взаимодействию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия как с растворителем, так и с адсорбентом. [c.15]

    Таким образом, - в высококипящих фракциях нефти, идущих на производство масел, скапливается основное количество серо-органических соединений — обычно 60—707о от содержащихся в исходной нефти. В тех случаях, когда перегонка нефти сопровождается разложением, часть этих соединений, термически менее устойчивых, может теряться в виде сероводорода или переходить из высококипящих фракций в низкокипящие. Однако основная часть сероорганических соединений остается в тяжелых дистиллятах и остатках. При разделении нвфтя1ных погонов с помощью хроматографии- на силикагеле или активной окиси алюминия эти соединения выделяются вместе с ароматическими углеводородами и смолами. Ниже приведены результаты хроматографического разделения на силикагеле средневязких дистиллятов сернистых и малосернистых нефтей (во всех случаях сера сопут- ствует ароматическим углеводородам и смолам) [1]  [c.22]

    Для очистки этана от возможных примесей На, Оа, N2 и СгН4 может быть применен сравнительно простой и более эффективный метод адсорбционной хроматографии на силикагеле или активной окиои алюминия. Разделение проводят при воздействии переменного теплового поля (хроматермография). [c.316]

    Трудно или почти невозможно назвать такую область науки и техники, где бы не применялись методы сорбции и хроматографии. Химия, химическая технология, гидрометаллургия, теплоэнергетика, атомная промышленность, биология и биохимия, водоподготовка, фармацевтическая, пищевая промышленность И многие другие отрасли народного хозяйства пользуются сейчас этими мзтода-ми как основными методами разделения и очистки самых разных веществ. Наряду с постоянным совершенствованием свойств и расширением ассортимента сравнительно старых материалов, таких как окись алюминия, силикагель, цеолиты, активные угли, ионообменные смолы, диатомитовые носители и другие, в последние годы появилось очень много совершенно новых материалов, предназначенных для расширения возможностей хроматографической и сорбционной тех-, ники. Можно с уверенностью утверждать, что в настоящее время технология производства материалов для сорбции и хроматографии переживает революционный скачок. Развитие этой отрасли химической технологии происходит так бурно и широко, что порой сведения о новых материалах с большим запозданием доходят даже до тех, кому они предназначены, не говоря уже о работающих в смежных, даже очень близких областях науки и техники. [c.3]

    Под сорбцией понимают поглощение газов, паров или растворенных веществ твердыми или жидкими поглотителями. При этом поглощаемые вещества называют сорбатами, а поглотители — сорбентами. Если при этом сорбат поглощается всем объемом сорбента, то процесс называют абсорбцией, а если он концентрируется на поверхности сорбента, то адсорбцией соответственно и сорбенты делятся на абсорбенты и адсорбенты. Чаще всего адсорбентами являются твердые тела с развитой поверхностью, в хроматографии широко применяют для этой цели силикагели, алюмогели, активные угли, молекулярные сита, пористые поли- 1ерные сорбенты. Жидкие поглотители (абсорбенты) сами по себе в аналитической хроматографии не используют, их обычно наносят на поверхность твердых материалов с относительно небольшой поверхностью, которые называют твердыми носителями. В этом случае наряду с абсорбцией и адсорбцией на поверхности жидкого поглотителя, называемого в хроматографии неподвижной фазой, может происходить адсорбция и на поверхности твердого носителя. Таким образом, в хроматографии применяют два основных типа сорбентов твердые адсорбенты и неподвижные фазы, нанесенные на твердый носитель. [c.29]

    Если в анализируемом образце компонентов присутствуют кислород, азот, окись и двуокись углерода, водород и метан, анализ их производится из отдельной пробы, при заполнении колонки хроматографа ХЛ-3 в тех же условиях термостатирования мелкопористым силикагелем или активным крупнопористым силикагелем соответствующего зернения.Выборснликагеля производится в зависимости от требований, предъявляемых к анализу. Применение мелкопористого силикагеля, изготовленного на Горьковской опытной базе ВНИИ НП, дает возможность разделения воз- [c.244]

    Хотя фирмы выпускают силикагель возможно более узких фракций, все же товарный силикагель необходимо еще раз поделить на фракции посредством просеивания или седиментации, а затем, если необходимо, промыть разбавленным раствором гидроксида натрия, органическими растворителями, например хлороформом, метанолом, и водой и после этого высушить. Чтобы получить адсорбент с заданной активностью, надо добавить к сухому адсорбенту отмеренное количество дистиллированной воды. Можно проводить дезактивацию, добавляя такие спирты, как пропанол, этиленгликоль, глицерин, но чаще всего дезактивируют силикагель водой. Активность этого адсорбента обычно определяют с помощью азокрасителей [33] методика определения подробно описана в разд. 4.2.3. Соотношение между количеством введенной воды и полученной активностью адсорбента показано в табл. 4.4. В большинстве случаев для хроматографирования пригоден адсорбент, содержащий 10—12% воды. Если же содержание воды превышает 16%, то разделение идет по механизму, характерному для распределительной хроматографии (ЖЖХ). Далее мы обсудим способы приготовления силикагеля, его разделения на фракции, дезактивации, регенерации, а также пропитки нитратом серебра. [c.162]

    Пористые стекла разных структурных типов могут быть использованы для целей хроматографического разделения газов. Как показывают результаты опытов, пористые стекла в газоадсорбционной хроматографии обнаруживают огфеделенные преимущества перед силикагелем и активной окисью алюминия. На рис. 12 это подтверждается для смесей метан — этан — этилен .  [c.74]

    А. применяют в противогазах для адсорбции вредных примесей и в качестве носителей катализаторов для химич. воздействия на эти примеси для очистки и осушки газов и жидкостей хроматографич. разделения смесей (см. Хроматография), как наполнители для полимеров в катализе в качестве носителей катализаторов в медицине для поглощения газов, ндов и т. д. Очень широко используют А. для очистки различных нефтепродуктов, природного и попутного газов от более выоококинящих углеводородов (активный уголь), разделения углеводородных смесей и выделения из них отдельных компонентов (гл. обр. молекулярные сита — пористые кристаллы, силикагель и активная окись алюминия), для очистки масе.)1 (см. Земли отбеливающие), а также в качестве носителей и катализаторов для химич. процессов нефте -переработки и т. д. [c.20]

    Для выделения органических суперэкотоксикантов из экарак-гов применяют различные сорбенты силикагель, кремниевую кислоту, оксид алюминия, флоризил(силикат магния), фосфат кальция, активный уголь, целлюлозу, полимерные смолы и др Классическим примером могут служить методы разделения ХОП и ПХБ с помощью флоризила [90,9 П и арохлора [92,93] Большое число работ посвящено вьщелению ХОС и ПАУ с применением колоночной хроматографии на силикагелях [36,94-96]. Установлено, что степень ра аделения ПХБ и ХОП зависит от пористости и удельной поверхности силикагелей, условий их активации и содержания воды Интересные результаты получены при использовании двух колонок, заполненных оксидами алюминия и кремния [97] (рис. 6 4) Для удаления остаточных количеств воды наряду с сорбентами в каждую колонку добавляют по 0,2 г безводного сульфата натрия [c.221]

    Силикагель — высушенный желатинообразный диоксид кремния, который получают из силиката натрия. Силикагели очень широко используются в хроматографии для разделения смесей нефтепродуктов, высших жирных кислот (ВЖК) и из сложных эфиров, ароматических аминов, иитро- и нитроэопроизводных органических соединений н др. В отличие от активированных углей силикагель — гидрофильный сорбент, и поэтому мало пригоден для сорбции из водных растворов (легко смачивается водой). Силикагели используют для осушки воздуха, обезвоживания неводных растворов — бензина, керосина, масел и т. д. Активность силикагеля зависит от содерн<ания в нем воды — чем меньше воды, тем выше его активность (по Брокману)  [c.150]

    Алюмогедь (активный оксид алюминия)—частично гидратированный оксид алюминия. Воды в нем 1—3%, 5уд= 170-+300 м /г. Получают его из чистого гидроксида алюминия, который активируют азотной кислотой, а затем нагревают при 450Х. При 500°С активный у-оксид превращается в неактивную а-модификацию. Промышленность выпускает активный оксид алюминия двух сортов А-1 и А-2. Оксид алюминия А-1 содержит макропоры, насыпная плотность 0,4—0,5 г/см , А-2 не содержит макропоры, насыпная плотность 0,55—0,8 г/см . Это полярный специфический сорбент, но менее пористый, чем силикагель. Кроме того, он обладает меньшим поляризующим действием, чем силикагель. С повышением температуры колонки его каталитические свойства возрастают, что невыгодно и хроматографии. Применяя оксид алюминия, дезактивированный 2 Уо воды, можно значительно уменьшить удерживаемый объем высококипящих веществ и осуществить десорбцию легко-кипящих компонентов без нагрева колонки. Перед заполнением колонки оксид алюминия прокаливают до постоянной массы при 200—300°С. [c.170]

    Широко используются различные известные варианты хроматографии, в том числе и наиболее распространенный — жидкостноадсорбционный. На рис. 63, U—г изображены схемы аппаратурного оформления колоночной хроматографии. Отношение диаметра колонки к ее высоте составляет 1 10, 1 15, а количество сорбента берут в 50 100 раз больше, чем количество разделяемой смеси. В качестве неподвижной фазы в жидкостно-адсорбционном варианте чаще всего применяют оксид алюминия различной активности или силикагель с размером гранул 100—150 или 150—200 мкм. С уменьшением размеров гранул разделительная способность сорбента возрастает, однако одновременно возрастает и гидродинамическое сопротивление всей колонки. Для ускорения хроматографического процесса элюент подают под давлением (рис. 63, д). [c.59]

    Разделительные колонки. В газовой хроматографии применяют колонки двух типов спиральные и капиллярные. В спиральных колонках (из стекла или различных металлов) диаметром 2—6 мм и длиной 0,5—20 м находится стационарная фаза. В случае адсорбционной газовой хроматографии она состоит из адсорбента (табл. 7.3), в случае газовой распределительной хроматографии из возможно более инертного носителя с тонким слоем жидкой фазы. Около 80% всех применяемых в газовой хроматографии колонок составляют спиральные колонки. Они представляют собой наиболее простую и не требующую затрат на обслуживание форму. К материалу носителя для газовой распределительной хроматографии предъявляют определенные требования (разд. 7.3.2) применяемые в настоящее время носители представляют собой разновидности силикагелей (диафорит, хромосорб, целит) или изоляционные материалы (породит, стерхамол). Необходимо устранять активные центры в носителях, которые затрудняют распределение вследствие явлений адсорбции. При проведении анализа полярных веществ на хроматограмме наблюдается появление хвостов , что затрудняет проведение анализа (разд. 7.3.1.2, стр. 346). Дезактивацию проводят промыванием растворами кислот или щелочей, а также силанированием . Под силанированием пони- [c.364]

    Для проверки этана на отсутствие примесей Нг, Ог N2 и С2Н4 методом адсорбционной хроматографии наиболее подходящими адсорбентами являются силикагель марки МСМ или Ai M и активная окись алюминия . [c.316]

    Адсорбционную хроматографию с использованием в качестве наполнителя колонок силикагеля очень широко применяют в классическом варианте жидкостной хроматографии. При однократном разделении силикагель оказывается достаточно удобным, эффективным и недорогим сорбентом. Очень интенсивно используют силикагель в качестве адсорбента для ТСХ (также однократно). Адсорбционная активность силикагеля достаточно легко воспроизводится путем определенных операций гидроксилирования, сушки, активации. Большой опыт применения силикагеля в ТСХ и колоночной хроматографии, естественно, стимулировал широкое его использование на ранних стадиях развития ВЭЖХ. [c.16]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]


Смотреть страницы где упоминается термин Силикагель в хроматографии активность: [c.95]    [c.507]    [c.21]    [c.106]    [c.59]    [c.222]    [c.89]    [c.452]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагель

Силикагель для хроматографи

Силикагель для хроматографии



© 2025 chem21.info Реклама на сайте