Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория рассеяния

    Широко используются для исследования структуры молекул и спектры комбинационного рассеяния (КР-спектры). Если через прозрачное вещество в кювете пропускать параллельный пучок света, то некоторая его часть рассеивается во всех направлениях. Если источник света монохроматический с частотой V, то в спектре рассеяния обнаруживается частота ч, равная частоте V. Этот результат вытекает как из квантовой, так и из классической теории рассеяния. Рассеяние без изменения частоты и соответственно без изменения энергии молекулы называют классическим, релеевским (по имени физика [c.145]


    ТЕОРИЯ РАССЕЯНИЯ ТЯЖЕЛОГО ГАЗА [c.116]

    Принятые нами упрощения позволяют поставить задачу в том виде, как ее ставил Рэлей при создании первой количественной теории рассеяния света мутной средой.  [c.20]

    Основной целью Рэлея было объяснение синего цвета неба. Для этого он разработал теорию рассеяния света частицами (1871 г.), согласно которой яркость рассеянного света обратно пропорциональна четвертой степени длины волны света. Следовательно, если исходный свет — белый, то рассеянный свет обогащается коротковолновыми компонентами и приобретает голубой оттенок, характерный также для многих коллоидных систем при боковом освещении, тогда как в проходящем свете остается больше длинноволновых компонент, которые придают ему красный оттенок. Позднее Рэлей, как и Планк, предположил, что рассеяние вызвано молекулами воздуха. Это предположение опроверг Л. И. Мандельштам в своей диссертации (1907 г.), показав, что основная часть рассеянного света обусловлена флуктуациями плотности в атмосфере. [c.20]

    Связь между теорией рассеяния света частицами и теорией рассеяния света на флуктуациях слишком сложна и не может быть объяснена на том уровне, который был принят в нашем изложении. Несмотря на различие в подходах, обе теории в сущности похожи. При этом не совсем понятно, какая из этих теорией является более общей. Дело в том, что с теоретической точки зрения нельзя найти условия, при которых одна теория была бы применима, а другая — нет. Например, если в системе имеются условия, при которых отдельная частица не рассеивает света (например, при = По), то и при флуктуациях концентрации этих частиц рассеяния тоже не будет. Наоборот, если рассеивающие свет частицы все время остаются в совершенно равномерном распределении (например, система при равномерном распределении заморожена при Т = 0), причем п.1 Ф По, то с точки зрения оптики каждая частица будет играть роль флуктуации. Применимость той или иной теории в каждом конкретном случае определяется только практическими соображениями. Например, при исследовании раствора макромолекул легко найти зависимость п от концентрации с, тогда как неизвестно. В этом случае используется флуктуационная теория. Эквивалентность обеих теорий можно показать следующим образом [1 ]. [c.25]

    Анализ картины рассеяния показывает, что в идеально однородной среде не должно быть явления рассеяния, так как вторичные волны гасят друг друга. М. Смолуховский и А. Эйнштейн разработали теорию рассеяния света на флуктуационных неоднородностях, возникающих из-за теплового движения молекул. [c.230]


    Теория рассеяния в жидкостях и растворах сталкивается со значительными трудностями в связи с необходимостью учета изменений внутреннего поля и флуктуации плотности и ориентации. Наилучшим приближением к условиям газовой фазы являются разбавленные растворы в инертных, неполярных и не образующих комплексов растворителях. [c.232]

    Размеры блоков мозаики по эффекту экстинкции находятся из зависимости, выведенной в динамической теории рассеяния рентгеновского излучения  [c.101]

    В. Рэлей развил теорию рассеяния света дисперсными системами, в которых частицы ие поглощают свет и имеют сферическую форму. В полученной формуле он связал световую энергию, рассеянную единицей объема дисперсной системы, с концентрацией частиц и их объемом V, длиной световой волны X и показателями преломления дисперсной фазы Пх и дисперсионной среды П2- Эта формула имеет вид  [c.389]

    Более общая теория рассеяния света и соответствующие расчетные формулы, справедливые для дисперсных систем всех степеней дисперсности, были предложены Г. Ми. Он учел, что при больших размерах частиц (г > 0,1 ь) наряду с электрическими возникают и магнитные поля, что осложняет картину рассеяния света системой и делает ее очень чувствительной к отношению г К. Максимум рассеяния согласно теории Ми наблюдается для систем с размерами частиц от 1/4 до 1/3 к. Теория Ми охватывает также системы с частицами, проводящими электрический ток, для которых формула Рэлея непригодна. Согласно теории Ми интенсивность светорассеяния проходит для проводящих частиц через максимум, положение которого зависит в основном от длины световой волны. [c.390]

    Перейдем к более подробному рассмотрению теории рассеяния быстрых электронов газообразными молекулами. Для этого еще раз представим в схематическом виде постановку задачи рассеяния электронов молекулами пара в современной газовой электронографии. Сформированный в электронографе поток быстрых электронов одинаковой энергии в некоторой области колонны прибора пересекается потоком молекул исследуемого вещества. Интенсивность рассеяния электронов на молекулах фиксируется фотопластинкой. В ходе эксперимента необходимо, чтобы электронный пучок был достаточно слабым (при этом не нужно было бы учитывать взаимодействие электронов между собой), монохроматичным и стационарным, плоскопараллельным и коллимированным, т. е. энергия электронов — порядка десятков тысяч электронвольт. Поток молекул должен быть бесконечно узким, а плотность молекул в потоке так мала, чтобы можно было пренебречь возможностью рассеяния электрона сначала на одной, а потом на другой молекуле. Итак, в этом случае полную интенсивность рассеяния пучка быстрых электронов УУ-атомной молекулой можно описать следующим выражением (общее уравнение интенсивности рассеяния пучка)  [c.131]

    Теоретическим аналогом функции гО(г) в кинематическом приближении теории рассеяния электронов молекулами является выражение [c.137]

    Формулы интенсивности рассеяния представляют произведения ряда множителей. Вывод этих формул требует использования сведений из атомной и ядерной физики, знания классической и квантовой теории рассеяния, а также основ физики твердого тела (динамики решетки, структурных дефектов, понятий о реальном, мозаичном и идеальном кристаллах и др.). [c.10]

    Рассеяние излучений веществом описывает как классическая, так и квантовая теория. Последняя является более полной и строкой. В случае упругого рассеяния результаты обеих теорий совпа-лают, и обычно используют классическую теорию рассеяния. [c.72]

    В гл. I было показано, что в рамках кинематической теории рассеяния рентгеновских лучей дифракционный спектр идеально мозаичного кристалла (Н) описывается следующей формулой  [c.99]

    Теорию рассеяния света разработал Релей (1871—1899). Она применима к системам, содержащим непроводящие частицы (золи диэлектриков) сферической формы с размерами во много раз меньше длины волны падающего света. Предполагается, что под действием электрического поля световой волны в частицах диэлектриков возникают индуцированные диполи, становящиеся новыми источниками излучения. Интенсивность света 81, рассеиваемого частицей, определяется по формуле [c.158]

    Рассеяние света наиболее заметно в дисперсных системах, однако и гомогенные системы рассеивают свет. Рассеяние света в газах, жидкостях и кристаллах, тщательно очищенных от различных включений, объясняется тепловым движением атомов и молекул, нарушающих их оптическую однородность. В результате такого движения концентрация атомов и молекул в одних частях системы превысит среднее значение, в других окажется ниже среднего. Теорию флуктуаций (отклонение от среднего в результате теплового движения) разработал, как уже указывалось, М. Смолуховский. Основываясь на представлениях Смолуховского, А. Эйнштейн разработал теорию рассеяния света [c.159]


    Теория рассеяния света крупными сферическими частицами была разработана Г. Ми (1908). На несферические частицы теория рассеяния света была распространена Р. Гансом. Ми разработал также теорию рассеяния света электропроводящими частицами. Наиболее тщательно изучены оптические свойства золя золота, окраска которого изменяется по мере увеличения размеров частиц от ярко-красной до фиолетовой. Проверка теории Ми на золях золота показала ее хорошее согласие с экспериментом, [c.160]

    Теория рассеяния света была разработана Д. Рэлеем (1871), который для систем с непроводящими частицами сферической [c.316]

    Наряду с ориентационным и индукционным взаимодействием существует еще один вид взаимодействия, который объясняется перемещением электронов в атоме или в молекуле, вызывающим возникновение мгновенных диполей в молекулах и атомах. С этим связана возможность перевода вешеств, состоящих из неполярных молекул (водород, азот, кислород, метан и др.) и атомов (благородные газы), в конденсированное состояние. При достаточном сближении частиц мгновенный диполь в одной из них, имеющий определенное направление в данный момент, вызывает ответный диполь в соседней частице, что может привести к синхронному полю во всей системе (рис. 34, в). От этого произойдет небольшое уменьшение энергии системы, воспринимаемое как очень слабое взаимодействие. Его количественная характеристика была предложена Ф. Лондоном (1930) на основании теории рассеяния (дисперсии) света. Энергия этого взаимодействия, названного дисперсионным, находится как [c.92]

    Уникальными возможностями обладает метод нейтронографии, успешно применяемый для исследования твердых тел и жидкостей, веществ с близкими и достаточно далекими атомными номерами, а также соединений, содержащих изотопы одного и того же вещества. По угловому распределению интенсивности рассеяния медленных нейтронов впервые удалось определить пространственное расположение атомов водорода и длины водородных связей в обычной и тяжелой воде, обнаружить наличие ближайшего ориентационного порядка, существующего в этих жидкостях наряду с ближним координационным порядком. Опыты по неупругому рассеянию медленных нейтронов продемонстрировали коллективный характер теплового движения атомов и молекул в жидкостях, подтвердили теоретические предсказания Л. Д. Ландау о существовании в жидком гелии квазичастиц двух типов фононов и ротонов. В настоящее время эти дифракционные методы являются составной частью физики твердого тела, физического материаловедения, молекулярной физики, биофизики и биологии. Они взаимно дополняют друг друга, имеют свою специфику, преимущества и ограничения, связанные с различием физических свойств рентгеновского излучения, электронов и нейтронов. На современном этапе при проведении структурных исследований используется новейшая аппаратура и вычислительная техника. Помимо навыков работы с ними от специалиста требуется знание теории рассеяния, основ статистической и атомной физики, природы сил взаимодействия атомов и молекул. [c.6]

    Наряду с оптическими методами для исследования дисперсных систем используются и рентгеновские методы, отличие которых от оптических заключается в малой длине волны рентгеновского излучения по сравнению с размером частиц дисперсной фазы. В основном рентгеновские методы используются для изучения внутренней структуры частиц дисперсной фазы (кристалличности, упаковки молекул). Возможно и определение размеров частиц, основанное на анализе формы дифракционных линий на рентгенограмме при дифракции рентгеновских лучей на малых кристаллах образуются размытые дифракционные максимумы, по ширине которых можно оценить размер частиц (точнее говоря, областей совершенной кристаллической решетки). Аморфные частицы, как известно, не дают дифракционных максимумов оценка размеров таких частиц может быть проведена с помощью анализа диффузного рассеяния рентгеновских лучей возле первичного пучка (так называемое малоугловое рассеяние). Теория этого метода определения размера аморфных частиц имеет общие черты с теорией рассеяния света большими частицами. [c.172]

    Это формула Борна, а приближенный способ вычисления волновой функции (94), основанной на теории возмущений, называется борновским приближением. ЭтЬ приближение используется в основном для описания рассеяния на малые углы. Однако часто оно оказывается вполне достаточным для качественного понимания процесса рассеяния с его помощью удобно делать первоначальные оценки, поскольку строгая квантовая теория рассеяния чрезвычайно сложна в математическом отношении. Теория возмущений, как мы видели, позволяет рассматривать рассеяние как квантовый переход в состояниях непрерывного спектра из начального состояния, соответствующего свободному движению [c.101]

    Характер взаимодействия излучения с частицами [66] зависит от размера частиц по сравнению с длиной волны излучения К. Уточнение этой зависимости приводит к необходимости рассмотрения теории рассеяния Ми [62, 65, 67]. Коэффициент ослабления излучения частицей е определяется следующим образом  [c.245]

    T a — температура поверхности твердой частицы T j — ударная трансформанта [58] — полное сечение столкновения, которое интерпретируется в теории рассеяния как некоторая плош адь, обладаюш,ая тем свойством, что через нее проходят частицы -й фазы, рассеиваюш,иеся при соударении друг с другом в пределах некоторого телесного угла. Например, математическое ожидание числа столкновений между молекулами газа со скоростями из [V , vJ -(- vJ J и [vJ", vJ" - - dv "] соответственно за время dt в объеме [г, г + dr] определяется как ( v — vf ) ] vf — vf (г, vf, t) X X P2 (r, vf, t) dvf dvfdrdi. [c.164]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]

    Подробное изложение теории рассеяния света частицами можно найти в монографиях Шифрина [2 ] и ван де Хюлста [3 ]. [c.23]

    Теория рассеяния света коллоидно-дисперсными системами была разработана Рэлеем в 1871 г. Она устанавливает зависимость интенсивности (количества энергии) рассеянного света (/) прн опалесценции и в конусе Фарадея — Тиндаля от внешних и впутреп- [c.296]

    Нефелометрический метод определения мицеллярной массы базируется на представлениях флуктуационной теории светорассеяния, развитой Эйнштейном. Согласно этой теории рассеяние света вызывают локальные микронеоднородности системы — термические флуктуации плотности и концентрации, которые, в свою очередь, вызывают флуктуации показателя преломления — локальные отклонения от его среднего значения. В результате свет, проходящий через среду, /[реломляется на границах микронеоднородностей и отклоняется от первоначального направления, т. е. рассеивается. [c.157]

    Кривоглаз М. А. Теория рассеяния рентгеновских луче11 и тепловых hbii-тронов реальными кристаллами.— М. Наука, 1967. [c.246]

    Поскольку в явлении дифракции электронов проявляются их волновые свойства, поток электронов в данном случае можно рассматривать как луч с длиной волны X. Марк и Вирль (Германия), впервые применившие дифракцию электронов для излучения молекул, воспользовались без каких-либо изменений теорией рассеяния рентгеновских лучей, разработанной до этого Дебаем. [c.293]

    Цель книги — показать, как по картине рассеяния рентгеновского излучения, электронов и нейтронов определяется молекулярная структура веществ от простейших по составу до сложных биологических объектов обобщить результаты исследований строения молекул, структуры различных типов индивидуальных жидкостей, металлических расплавов, растворов электролитов и неэлектролитов, жидких кристаллов н аморфных веществ изложить теорию рассеяния рентгеновского излучения иод обычными и малыми углами, дифракции электронов и нейтронов, методику и технику эксперимепта, общие представления о природе химических связей и сил межмолекулярного взаимодействия. В основу книги положены лекционные курсы, читаемые для студентов Киевского ордена Ленина государственного университета имени Т. Г. Шевченко, специализирующихся по молекулярной физике, а также написанное автором учебное пособие Структурный анализ жидкостей (1971). [c.3]

    Метод электронографии возник в начале 30-х годов XX в. на основе теории рассеяния рентгеновского излучения, созданной П. Дебаем, П. Эренфестом и Ф. Цернике — Дж. Принсом. Начиная с 40-х годов в результате введения секторной методики резко повысилась точность измерения интенсивности рассеянных электронов. [c.134]

    Количественное олисание структуры молекулярных жидкостей стало возможным благодаря развитию теории рассеяния рентгеновского излучения, созданию на ее основе метода интегрального анализа кривых интенсивности. [c.237]

    С начала 30-х годов XX в. для открытия и определения многих химических соединений (особенно органических веществ) стал применял ь-ся метод комбинационного рассеяния (КР) света — так называемый ра-ман-эффект . Эффект комбинационного рассеяния света открыли в 1928 г. независимо друг от друга Ч. В. Раман (совместно с К. С. Кришиа-ном и Венкатесвараном) в Индии при изучении спектра рассеяния жидкого бензола и отечественные ученые Г. С. Ландсберг и Л. И. Мандельштам — при исследовании спектров рассеяния кристаллов. Заметим, что эффект КР света был предсказан теоретиками и обоснован еще до его экспериментального открытия. Так, Е. Ломмель в 1871—1878 г.г. развил математическую теорию рассеяния света ангармоническим осциллятором, из которой следовало, что в спекфе его рассеяния могут проявлять- [c.45]

    Происхождение комбинационного рассеяния можно понять, используя представления квантовой теории рассеяния. При столкновении с молекулами кванты света рассеиваются. Если столкновение полностью упругое, они отклоняются от первоначального направления своего движения (от источника), не изменяя энергии. Если же столкновение неупругое, т. е. происходит обмен энергией между квантом и молекулой, молекула может потерять или приобрести дополнительно энергию Д в соответствии с правилами отбора. Приче.м ДЕ должна быть равна из.менению колебательной и (или) врапдательной энергии и соответствовать разности энергий двух разрешенных ее состояний. Излучение, рассеянное с частотой, меньшей, чем у падающего света, называют стоксовым, а с частотой большей — антистоксовым. Стоксово излучение сопровождается увеличением энергии молекул (такой процесс может произойти всегда), и линия его более интенсивна (на несколько порядков), чем антисток-сова, так как в этом случае молекула уже должна находиться в одном из возбужденных состояний (рис. 32.9). [c.770]


Библиография для Теория рассеяния: [c.325]   
Смотреть страницы где упоминается термин Теория рассеяния: [c.75]    [c.93]    [c.98]    [c.245]    [c.246]    [c.246]    [c.118]    [c.208]    [c.474]    [c.266]   
Правила симметрии в химических реакциях (1979) -- [ c.160 ]

Введение в молекулярную теорию растворов (1956) -- [ c.120 ]




ПОИСК







© 2024 chem21.info Реклама на сайте