Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы исследования макромолекул в растворах

    Вискозиметрия является универсальным и доступным методом изменил состояния макромолекул в растворе. Если ставится задача такого типа, например с целью подбора наилучшего растворителя или определения молярной массы полимера, то самым надежным способом исключить всевозможные вторичные эффекты (типа структурирования) является исследование разбавленных растворов. Критерии разбавленности полимерных растворов могут сильно отличаться от критериев для растворов низкомолекулярных веществ. Приведенная выше количественная оценка показала, что концентрация 1 масс. % может оказаться очень большой с точки зрения ее влияния на вязкость растворов. Заранее критерии разбавленности обычно неизвестны. С другой стороны, работа с сильно разбавленными растворами не обеспечивает требуемой точности измерения вклада полимера в вязкость раствора. По этим причинам практически во всех случаях необходимо исследовать концентрационную зависимость вязкости растворов (находить изотермы вязкости) и затем определять значение констант уравнения изотермы при минимальной концентрации путем экстраполяции изотермы к нулевой концентрации полимера. Отсюда следует, что, во-первых, необходимо располагать уравнением изотер.мы вязкости и, во-вторых, коэффициенты этого уравнения должны иметь определенный физический смысл, делающий их значения пригодными для суждения о состоянии полимера в растворе. Таковым является уравнение Эйнштейна  [c.741]


    С тех пор как Дебаем был теоретически и экспериментально развит метод светорассеяния в применении к растворам цепных статистически свернутых молекул [1, 2], этот метод стал одним из основных физических методов исследования полимеров. Применение его не ограничивается в настоящее время определением молекулярных весов (что, само по себе, для полимеров с М 10 —10 представляет достаточно сложную задачу), а включает определение таких важнейших характеристик полимера, как размеры и форма макромолекул, полидисперсность образца, композиционная дисперсия сополимеров, термодинамические параметры межмолекулярного взаимодействия в растворах и др. [c.205]

    Структура полимеров в разных фазовых и агрегатных состояниях была достаточно подробно рассмотрена в части первой и гл. IV. Ее существенная особенность — разнообразие возможных конформаций макромолекул при упаковке цепей в разных конформациях получаются различные типы морфоз, образующих структурную иерархию, заканчивающуюся объ-емно-конденсированной системой или раствором — в обоих случаях большой одно- или мультикомпонентной системой, физические свойства или области переходов которой предопределены структурой самих макромолекул (конфигурационной информацией) и характером разных уровней надмолекулярной структурной организации. Физические свойства полимеров в разных состояниях не только предопределяют конкретные возможности их рациональных применений, но и — как вообще в физике — определяют выбор методов исследования, так как всегда существует более или менее сложные, прямые или непрямые, корреляции между структурой и всеми физическими свойствами. [c.317]

    Физические методы исследования макромолекул в растворах [c.33]

    Метод светорассеяния является в настоящее время одним из основных физико-химических методов определения молекулярного веса и средних размеров макромолекул в растворах. В его основе лежит строгая и хорошо экспериментально проверенная физическая теория. Метод является абсолютным, т. е. не нуждается в калибровке с привлечением других методов и не требует предварительных предположений о структуре исследуемых макромолекул. Метод использует сравнительно несложную и недорогую аппаратуру и имеет весьма широкий диапазон применения. В то же время метод светорассеяния, в значительно большей степени, чем другие оптические методы исследования полимеров, требует заботы о тщательной очистке растворов перед измерениями, вплоть до разработки специальных приемов очистки. [c.100]


    Естественно, что авторы разных глав, описывая различные аспекты очень отличных друг от друга методов, подчеркивают либо достижения в развитии аппаратурных возможностей, либо новизну самого метода и его теоретические основы, либо возможности применения метода к исследованию структуры и свойств макромолекул, растворов полимеров и полимерных тел. Однако независимо от формы изложения материала в разных главах, данная книга, содержащая новейшие данные об используемых и развиваемых в Советском Союзе физических методах исследования строения полимеров, должна дополнить ряд изданных ранее руководств в области методов исследования полимеров. [c.5]

    Основная физическая идея о макромолекуле, как о линейной кооперативной системе, и воплощение этой идея с помощью модели Изинга были вначале применены к исследованию макромолекулы в растворе и в высокоэластическом состоянии. В дальнейшем американские ученые начали развивать конформационную статистику биополимеров, создав, в частности, теорию переходов спираль — клубок, основанную на той же идее и том же методе. Позднее представление об одномерной кооперативности было применено автором этих строк к исследованию редупликации дезоксирибонуклеиновой кислоты. [c.7]

    Исследование химической и физической неоднородности макромолекул лигнина — одно из важных направлений в химии этого природного полимера Известно, что молекулярная масса (ММ) лигнинов, выделенных из различных видов растений, неодинакова Даже для одного и того же вида она зависит от места локализации лигнина и метода его выделения Это связано с деструкцией макромолекул лигнинов при выделении или разделении по фракциям, пофешностями методов определения ММ, обусловленными полидисперсным характером лигнина, неопределенностью поведения его в растворах, осложняюшими калибровку Все указанные факторы затрудняют сравнение опубликованных результатов [108, 110] [c.150]

    Оригинальный физический метод исследования локальной, маломасштабной динамики макромолекул в растворе дан в работах [12—14]. Он основан на исследовании деполяризации оп- [c.317]

    Исследование макромолекул как синтетических, так и биологических полимеров требует прежде всего определения молекулярных весов (м. в.). Эти определения производятся в растворах полимеров с помощью ряда методов. Методы, основанные на понижении точки замерзания и на повышении точки кипения раствора, — криоскопия и эбуллиоскопия — пригодны лишь для весьма разбавленных растворов полимера малого молекулярного веса (100—5000). Чувствительность таких методов падает с увеличением м. в., и ими практически не пользуются. Метод изотермической перегонки, основанный на понижении давления пара над раствором по сравнению с чистым растворителем, достаточно точен в интервале м. в. 1000—20 ООО, но связан с большими экспериментальными трудностями [47, 52]. Теоретические основы этого метода в сущности те же, что и метода измерения осмотического давления, осмометрии, который весьма широко применяется в физике и физической химии полимеров [47, 52, 53]. [c.146]

    Транспортные методы являются, конечно же, не единственными методами определения молекулярных масс и полидисперсности. Хорошо известны такие абсолютные методы определения М как светорассеяние растворами полимеров, осмометрия, криоскопия, эбулиоскопия и т. п., а также исследование молекулярномассового распределения (ММР) с помощью фракционирования, электронной микроскопии и т. д. Тем не менее именно транспортные методы получили в настоящее время чрезвычайно широкое распространение, и их совокупность составляет аналитическую основу современной физической химии полимеров как методов исследования молекулярно-массовой, композиционной, структурной и других типов неоднородностей макромолекул [12—16]. [c.7]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]


    Основная задача исследований - оценить специфику конформационного состояния макромолекул (со)полимеров АА в растворе. Для достижения цели могут быть использованы разнообразные физико-химические и физические методы анализа [6, 21, 22] вискозиметрия, ультрацентрифугирование, диффузия, светорассеяние, двойное лучепреломление в потоке, осмометрия и др. Особо следует остановиться на вискозиметрическом методе анализа (со)полимеров АА, поскольку этот метод является наиболее доступным и продуктивным. [c.153]

    Во всех работах по физической химии растворов макромолекул подчеркиваются физические свойства этих систем и полностью игнорируется их химическая реакционная способность. Этот факт вызывает сожаление, так как исследования кинетики реакций, протекающих в растворах макромолекул, дают информацию, которая имеет отношение к ряду проблем, рассмотренных в предыдущих главах книги. Как будет показано ниже, реакционная способность цепной молекулы может зависеть как от ее конфигурации, так и от ее конформации. В случае нолиэлектролитов кинетические исследования могут пролить свет на величину электростатического взаимодействия и фактически могут представлять ценный метод исследования физических свойств, которые трудно изучать каким-либо другим образом. [c.345]

    Принципы метода скорости седиментации. Ультрацентрифугирование — один из наиболее распространенных физических методов анализа, применяемых для исследования свойств макромолекул в растворе. Этот метод и его разновидности позволяют получать сведения о размере, форме, молекулярном весе, скорости седиментация исследуемых макромолекул, а также об изменениях их структуры  [c.14]

    Имеется несколько монографий [1] и очень много обзоров [2], посвященных описанию методов получения ионообменных смол. Возможности обменников можно полностью оценить, только зная физическую химию рассматриваемых процессов поэтому разработка технически важных смол сопровождалась постановкой большого числа фундаментальных исследований. Сейчас основные закономерности уже установлены, и внимание исследователей, работающих в этой области, концентрируется на решении важных фундаментальных проблем физической химии обмена в концентрированных растворах. Особое внимание при этом уделяется межионному взаимодействию и взаимодействию между ионами и макромолекулами. [c.95]

    Промышленная ценность полиэтилена вызвала широкий интерес к установлению корреляций между его физическими свойствами и параметрами первичной структуры, такими, как молекулярный вес, молекулярно-весовое распределение и разветвленность цепей. Из методов анализа поведения макромолекул в разбавленных раствора.х, которые могут быть использованы для определения перечисленных параметров, практически наиболее важным является метод рассеяния света под различными углами. Этот метод дает информацию о размерах макромолекул и их конформациях в растворах. Поскольку во всех гидродинамических и термодинамических исследованиях главной искомой величиной является конформация цепи н ее зависимость от природы растворителя, температуры, молекулярного веса и химического состава, этому параметру уделено особое внимание в данном изложении. [c.9]

    Молекулы, обладающие высокой флуоресцирующей способностью, могут быть обнаружены в растворах таких низких концентраций, как 10 М. Рассеянный свет с длиной волны, равной длине волны начального пучка, не мешает определению, так как может быть отфильтрован. Молекулы многих флуоресцирующих веществ содержат ионогенные или химически реакционноспособные группы, благодаря чему они способны образовывать комплексы с определенными макромолекулами, и в особенности с биополимерами. Метод флуоресценции широко используется для обнаружения структур при цитологических исследованиях [1]. В последнее время комплексы флуоресцирующих молекул и белков были успешно использованы в иммунологии в качестве метки [2]. В этом отношении несколько отстает применение флуоресцентной техники для физической характеристики макромолекулярных систем, хотя с помощью флуоресценции можно обнаружить микроскопические релаксационные процессы в полимерах как в растворе, так и в конденсированном состоянии. [c.169]

    Главный недостаток опытов по химической модификации оснований заключается в том, что при такой модификации, происходящей с образованием ковалентных связей, могут произойти изменения в структуре тРНК. Даже тогда, когда после модификации сохраняется биологическая активность, мы не можем быть абсолютно уверены в том, что структура не изменилась. Физические методы исследования макромолекул в растворе имеют то преимущество, что применение многих из них никак не связано с риском изменить структуру исследуемых молекул. [c.411]

    Рискуя навлечь на себя критику в категоричности обобщений, мы все же возьмем на себя смелость заявить, что основной тенденцией современных исследований все в большей степени становится переход к аналитическим методам исследования, под которыми мы понимаем исследования на уровне отдельных атомов. Логика здесь простая вне зависимости от того, что является объектом исследования — явления окружающей природы или же социальные явления, одно остается бесспарным никакое явление не может считаться изученным до конца, поскольку сведения, которыми мы располагаем на данном этапе, отражают лишь соответствующий уровень наших исследований. Например, в первой главе этой книги было показано, что физико-химические свойства каучука, а также разбавленных растворов полимеров определяются термодинамическими характеристиками макромолекул, из которых состоят эти системы, и даже в большей степени структурных элементов макромолекул, т. е. сегментов. В этом плане физическая химия полимеров, разумеется, не является исключением, и эту точку зрения прекрасно сформулировал В. И. Ленин, сказав, что электрон так же неисчерпаем, как атом. [c.68]

    Если определение молекулярного веса ДНК связано с особыми трудностями (из-за большого размера молекулы и ее двухспиральной структуры), то точное измерение молекулярного веса РНК в принципе не сложнее, чем определение молекулярного веса любого белка или другого полимера. В разбавленных солевых растворах РНК, молекулярный вес которых варьирует от 26 000 до 2 000 000, имеют довольно компактную конформацию. Таким образом, они имеют размеры и структуру, для изучения которых внолне приложимы обычные физико-химические методы исследования макромолекул. Но, несмотря на это н несмотря на столь важное значение РНК, в литературе можно найти лишь несколько наден ных измерений их молекулярного веса. Чтобы понять причину этого, следует уяснить себе те трудности, с которыми приходится сталкиваться при определении физических параметров РНК. Сюда входит проблема получения достаточных количеств действительно чистого материала, влияние следовых количеств нуклеаз и тенденция молекул РНК к агрегации. [c.251]

    В биологических системах фигурируют одномерные, двумерные и трехмерные кооперативные системы, содержащие большое число статистических элементов. Это соответственно макромолекулы биополимеров (белков и нуклеиновых кислот), надмолекулярные мембранные структуры и т. д. Глобулы белков в растворах и в надмолекулярных структурах могут рассматриваться как трехмерные кооперативные системы. Физические свойства указанных структур кооперативны, т. е. они существенным образом зависят от взаимодействия элементов. Кооперативность— принципиальная особенность молекулйрно-биологи-ческих систем, определяющая широкий круг явлений (см. [43]). Методы исследования кооперативных процессов имеют большое значение в теоретической биофизике. [c.44]

    Теоретические и экспериментальные исследования спектров макромолекул, проведенные в последние годы, позволили получить некоторые важные данные о физических свойствах и структуре полимеров. Так, при помощи анализа нормальных колебаний было окончательно установлено строение макромолекул таких полимеров, как полиоксиэтилен [18, 19], полиаллен [8], поли-диоксолан [48], полиакрилонитрил [49], пентон [50], причем данные по строению этих полимеров не удавалось получить другими методами структурного анализа. Одним из ярких примеров успеха метода колебательной спектроскопии является окончательное установление структуры макромолекул полиакрилонитрила [49]. Рентгеновскими исследованиями кристаллов этого полихмера [29, 30] и изучением ЯМР-спектров высокого разрешения растворов не удавалось определить конфигурацию и конформацию цепи ПАН. В 1964 г. был проведен расчет частот и форм нормальных колебаний для плоской син-диотактической модели ПАН и его дейтеропроизводных и результаты расчета сравнивались с экспериментальными спектрами [47]. Однако полного совпадения рассчитанных и наблюдаемых спектров получено не было. В 1965 г. Кримм и др. вычислили колебательный спектр различных моделей ПАН — спиральной изотактической, спиральной синдиотактической и плоской зигзагообразной синдиотактической [49]. [c.260]

    На изложенной выше основе разработан радиоспектраль-ный метод исследования термодинамических характеристик парамагнитных растворов и смесей, который предназначен для исследования обратимых процессов перераспределения парамагнитного и диамагнитного вещества в растворах и смесях. Способ рекомендуется применять в нефтехимии, углехимии и физике макромолекул, коллоидной химии, в молекулярной биологии и химической физике для исследования процессов, связанных с генерацией, и обменом парамагнитных центрюв между диамагнитными и парамагнитными компонентами в растворах и смесях. Физическая сущность способа заключается в использовании эффекта спин-решеточной релаксации, вследствие чего долю диамагнитных и парамагнитных компонентов смеси [c.22]

    Существует распространенная точка зрения о том,что ввы-сококонцентрированных растворах природа растворителя не оказывает влияния на свойства растворов, поскольку в этой области составов решающее значение имеет взаимодействие между макромолекулами. Однако, как будет показано ниже, и в этом случае качество растворителя продолжает оставаться важным фактором. В дальнейшем будет предложено физическое-обоснование этого явления и обсуждены методы нахождения вида функции т]д(с,5). В настоящем исследовании влияние температуры на вязкость не рассматривали, а молекулярный вес изученных образцов варьировали лишь в весьма узких пределах. [c.215]

    Изложенному методу присущи два недостатка. Во-первых, теория не вполне правильно предсказывает характер влияния молекулярного веса на вязкость, как это показано 151 расчетами для исследованных высокомолекулярных образцов. Во-вторых (и это является наиболее важным), существует разительное расхождение между значениями рассчитываемыми по формуле (20а) и определяемыми экспериментально для растворов в плохих растворителях. Формально это может объясняться неверной оценкой величины А в формуле (22), которая для плохих растворителей становится очень малой. Физическая причина этого — в существовании ассоциации макромолекул и образовании структуры в плохом растворителе. Наличие надмолекулярных ассоциатов должно приводить к повышению вязкости, причем образующиеся асссциаты должны быть большими по размеру и более устойчивыми для растворов полярных полимеров. Эти соображения согласуются с экспериментальными результатами, представленными на рис. 12. Для систем такого рода рассматриваемая модель, конечно, не может быть применена. [c.239]

    Предположение о сольватации молекул в растворах ПАВ и ВМС находится в согласии с результатами многих исследований, показавшими, что действие молекулярных сил может распространяться от поверхности макромолекул на сотни ангстрем [216—218]. Морачевский [219], применяя современные физические и физико-химические методы, установил, что в растворах ПАВ происходит значительное изменение структуры воды, которое можно интерпретировать как увеличение ее льдоподобности. [c.35]

    В первой части книги, охватывающей главы I и II, речь пойдет о теоретическом рассмотрении полимеров в растворе методами статистической механики. Достаточно полное описание физической модели полимера будет приведено только во второй главе, и оно не может быть сделано кратко. Попытаемся, однако, с самого начала дать читателю некоторое представление о предмете исследования в той степени, в какой это необходимо для формулировки математического метода, имеющего целью объяснить мехэниче- ские, оптические и термодинамические свойства макромолекулы в растворе. [c.9]

    Изучая физические свойства блочного полимера, мы имеем дело со сложной совокупностью полимерных цепей. Конечно, в основе поведения блочных полимеров лежат свойства отдельных макромолекул. Однако далеко не все свойства макромолекул могут быть определены путем исследования блочного полимера. Если полимер кристалличен, то методы рептгено- и электронографии позволяют исследовать стереометрию цепей (ом. главу V). Изучение аморфных и кристаллических полимеров методами спектроскопии и молекулярной оптики позволяет охарактеризовать атомные группы, содержащиеся в макромолекулах, и их поведение при растяжении. Однако оснотшым способом исследования отдельных макромолекул является изучение растворов полимеров в низкомолекулярных растворителях. [c.33]

    Изложенные теоретические результаты могут быть сопоставлены с экспериментальными данными по термодинамической гибкости (т. е. степени свернутости) полимерных цепей в растворе и высокоэластическом состоянии, в частности с данными по средним размерам и средним дипольным моментам макромолекул в растворе, по температурной зависимости размеров, по энергетическим эффектам при растяжении блочного полимера и т. д. Построение статистической теории, связывающей параметры гибкости макромолекул с данными физическими характеристиками, требует использования математического аппарата статистической физики одномерных кооперативных систем (например, матричного метода модели Изинга). Сравнение такой теории с опытом привело к хорошему согласию и позволило оценить сравнительную роль двух возможных механизмов гибкости в статистическом закручивании макромолекул. Во всех исследованных случаях оказалось, что наблюдаемая закрученность цепей практически цслк1 о т обусловлена поворотной изомеризацией, а крутильные колебания играют второстепенную роль. [c.285]

    Мы видели (стр. 213—219), что асимметрия рассеяния света разбавленными растворами полимеров возникает в результате интерференции пучков света, рассеянных различными частями молекулы. Поэтому она становится незначительной, если размеры молекулы малы по сравнению с длиной волны падающего света. Однако при исследовании растворов нолиэлектролитов, не содержащих обычных солей, очень большое взаимное отталкивание полиионов приводит к упорядоченному распределению этих сильно заряженных молекул даже при сравнительно сильном разведении. Этот эффект наблюдался Доти и Штейнером [778] для растворов гидрохлорида сывороточного альбумина, которые проявляют сильную асимметрию светорассеяния, несмотря на то что размеры молекул этого глобулярного белка составляют лишь около 40 А. В этом случае явление отражает интерференцию света, рассеянного различными макромолекулами, и точные данные о растяжении отдельной макромолекулы могут быть получены лишь нри разбавлениях, которые слишком велики для того, чтобы получить имеющие какой-либо физический смысл результаты. Положение становится гораздо более благоприятным, если раствор ноли-электролита содержит обычные соли. Орофино и Флори [779] показали, что в таком случае для оценки радиуса инерции полииоиа может быть использована предложенная Зиммом двойная экстраполяция (стр. 215). Данные Орофино и Флори, изображенные графически на рис. 103, ясно показывают, каким образом набухает цепь полиакриловой кислоты с увеличением заряда полииона и уменьшением концентрации добавленной соли. Однако следует подчеркнуть, что для больших значений отношения mfl/ms отклонения от поведения идеального раствора становятся значительными и экстраполяция данных но светорассеянию до нулевой концентрации раствора может стать весьма затруднительной и неопределенной. В гл. VI было показано, что определение характеристической вязкости — наиболее удобный экспериментальный метод характеристики [c.279]

    В книге изложены основы фнзикохимии полимеров — современные представления о фазовых и физических состояниях полимеров и фазо-, вых переходах, о надмолекулярной структуре полимеров и методах ее исследования, о механических, реологических и электрических свойствах полимеров. Большое внимание уделено теории растворов полимеров. Отдельные главы посвящены пластификации, смесям полимеров, проницаемости, методам опред ения молекулярных масс, размеров и гибкости макромолекул. Учебное пособие переработано в соответствии с новой программой курса (2-е издание вышло в 1968 г.). [c.2]


Смотреть страницы где упоминается термин Физические методы исследования макромолекул в растворах: [c.325]    [c.21]    [c.170]    [c.362]    [c.13]   
Смотреть главы в:

Конфигурационная статистика полимерных цепей 1959 -> Физические методы исследования макромолекул в растворах




ПОИСК





Смотрите так же термины и статьи:

Макромолекула в растворе

Методы физические

Физическое исследование



© 2025 chem21.info Реклама на сайте