Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крахмал наличие в растениях

    УГЛЕВОДЫ. При наличии углеводов большинство клеток использует в качестве субстратов именно их. Полисахариды (крахмал у растений и гликоген у животных и грибов) вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов. [c.344]

    В зеленых листьях растений в результате взаимодействия двух простых соединений — углекислого газа и воды — образуется один из сахаров, (- -)-глю-коза. Этот процесс, известный под названием фотосинтеза, требует наличия катализатора, зеленого красителя хлорофилла, и происходит при освещении (источник энергии). Тысячи молекул (+)-глюкозы могут объединяться в молекулы гораздо большего размера — целлюлозу, которая является основным строительным материалом растений. Молекулы (+)-глюкозы могут также соединяться иным способом, давая большие молекулы крахмала, который хранится в семенах как запас питательных веществ для нового растущего растения. [c.931]


    Для растений характерны способность к фотосинтезу, наличие целлюлозы, биосинтез крахмала [c.36]

    Ход работы. В 2 пронумерованные пробирки помещают в первую — зеленый листик растения, во вторую — пожелтевший. В обе пробирки наливают по 1—2 мл дистиллированной воды и содержимое кипятят 2—3 минуты. Горячую воду сливают и в каждую пробирку наливают по 1 мл этилового спирта. Пробирки помещают в кипящую водяную баню на 3—5 минут и ежеминутно встряхивают. Хлорофилл зеленого листа и ксантофилл желтого листа переходят в спирт и листья обесцвечиваются. Окрашенный спирт сливают в склянку с надписью хлорофилл , а почти бесцветные листья заливают в тех же пробирках новыми порциями спирта и нагревают еще раз в течение 3—5 минут. Спирт сливают, а листочки промывают несколько раз дистиллированной водой. Затем в каждую пробирку наливают 3—4 мл дистиллированной воды и пробирки помещают в кипящую водяную баню для размягчения тканей листа. Через 5—10 минут воду сливают, листочки помещают на пронумерованные кусочки фильтровальной бумаги. На отмытые листочки наносят несколько капель 1 % раствора йода. При наличии в листочках крахмала постепенно появляются синие точки и, наконец, весь лист принимает синюю окраску. Работу по открытию крахмала и следующие работы по открытию редуцирующих веществ фиксируют в форме таблицы. [c.263]

    Фосфор является обязательной составной частью растений. Наличие в достаточных количествах фосфора в почве ускоряет развитие и созревание растений, повышает урожайность и улучшает качество сельскохозяйственной продукции. При этом увеличивается соотношение между зерном и соломой в общем урожае зерновых культур, возрастает содержание сахара в плодах, овощах и корнеплодах, образуется больше крахмала в клубнях картофеля, улучшается качество волокон льна, конопли, хлопчатника. [c.8]

    Сухое вещество растения, которое, естественно, представляет большой интерес при сборе урожая, состоит из органических и минеральных соединений. На долю органических соединений приходится до 80—95% от общего количества сухого вещества. Главными органическими соединениями, входящими в состав растительной массы, являются белки, жиры и углеводы. Наличие в растениях тех или других органических соединений имеет большое практическое значение, так как определяет качество урожая. Таким хозяйственно важным признаком для хлебных злаков является количество белка, для картофеля — крахмала, для сахарной свеклы — сахара, для масличных культур — жира и т. п. [c.13]

    Растворимые сахара содержатся в большем или меньшем количестве в любом растении, поэтому качественное их определение не имеет смысла. Тем не менее в процессе исследования и разделения природных соединений может возникнуть необходимость определения сахаров в отдельных фракциях. Надежной реакцией является реакция Бертрана. В пробирке 8—10 мл испытуемого раствора смешивают с равным объемом реактива Фелинга и кипятят 2—3 мин. Оранжево-красный осадок закиси меди указывает на присутствие редуцирующих сахаров. Если результат отрицательный, то в другую пробу раствора, нагретого до кипения, вносят каплю концентрированной соляной кислоты и после этого добавляют фелингову жидкость. Появление осадка указывает на наличие связанных простых сахаров, которые образовались в результате гидролиза дисахаридов, крахмала и гликозидов. [c.319]


    В две пронумерованные пробирки помещают в первую — зеленый лист растения, во вторую — желтый. В обе пробирки наливают по 1—2 мл дистиллированной воды и содержимое кипятят 2-3 мин. Горячую воду сливают и в пробирки наливают по 1 мл этилового спирта. Пробирки кипятят на водяной бане 3—5 мин при ежеминутном встряхивании. Хлорофилл зеленого листа и ксантофилл — желтого переходят в спирт, и листья обесцвечиваются. Окрашенный спирт сливают, а листья в пробирках заливают новыми порциями спирта и нагревают еще раз в течение 3—5 мин. Спирт сливают, а листья промывают несколько раз дистиллированной водой. Затем в каждую пробирку наливают 3-4 мл дистиллированной воды и кипятят их на водяной бане для размягчения тканей листа. Через 5—10 мин воду сливают, листья помещают на фильтровальную бумагу и наносят на них несколько капель раствора иода. Наблюдают появление синих точек, а затем посинение всего листа при наличии крахмала. [c.201]

    Получение функционально активных митохондрий из растений связано с рядом определенных трудностей. В первую очередь, к ним относится наличие плотных и жестких клеточных оболочек, вызывающих механические повреждения при растирании клеток. Отрицательную роль играют кислая реакция клеточного сока, выделяющегося в процессе гомогенизации ткани, а также содержащиеся в значительном количестве во многих растительных клетках фенольные соединения, являющиеся разобщающими агентами и ингибиторами. Другие особенности растительных тканей, например высокое содержание крахмала, хлорофилла, масел и т.д., также оказывают влияние на качество и чистоту изолированной митохондриальной фракции. Поэтому для получения интактных митохондрий в каждом конкретном случае в [c.11]

    Основные структурные компоненты крахмала — линейный полисахарид — амилоза и разветвленный — амилопектин. Мономерами их, как и у целлюлозы, являются ангидроглюкозные циклы, скрепляемые гликозидными связями. Отличиями от целлюлозы являются наличие а-связей, конформация макромолекул и их полимеризация. Схематически фрагменты цепей амилозы и амилопектина представлены на рис. 30. В крахмале различных растений содержится от 15 до 25% амилозы и 75—85% амилопектина. [c.172]

    Из значительного числа микроэлементов, необходимых рас-ИЯМ, наибольшее практическое значение имеют бор, молиб-[. марганец, медь и цинк. При наличии и почве микроэлемек- в растениях повышается содержание сахара, крахмала, жи- [c.345]

    Основные резервные полисахариды водорослей включают крахмалоподобные полисахариды и ламинаран. Зеленые, красные и сине-зеленые морские водоросли, а также пресноводные водоросли содержат полисахариды типа крахмала, также состоящие из амилозы и амилопектина. Отсутствие амилозы в некоторых экстрактах может объясняться ее деструкцией при выделении в кислотных или щелочных растворах. Б отличие от крахмалов растений крахмалы водорослей дают менее вязкие растворы и обладают более низкой способностью связывать иод, что указывает на меньший размер их молекул. Наличие молекул меньшего размера продемонстрировано также с помощью рентгеноструктурного анализа, который показал, что гранулы этих крахмалов имеют более простую организацию, но все еще обладают характеристиками растительных крахмалов. Крахмалы водорослей более чувствительны к действию амилолитических ферментов. Средняя длина их цепи составляет 10—19 структурных единиц в их молекулах обнаружено небольшое число а-(1- 3)-связей [125]. [c.248]

    Полисахариды — высокомолекулярные вещества, состоящие из повторяющихся структурных единиц. Отличаются друг от друга структурой моноса-харидных звеньев, молекулярной массой, а также гликозидных связей. Благодаря наличию большого числа полярных групп, полисахариды после набухания растворяются в воде и образуют коллоидные растворы. Они присутствуют почти во всех клетках и выполняют многообразные функции. Велика их роль в образовании биологических структур. Так, хитин образует панцири членистоногих, целлюлоза является основной структурой зеленых растений, мукополисахариды — важнейшие компоненты соединительной ткани. Гликоген в животных, а крахмал в растительных организмах являются важнейшими резервными полисахаридами. Их делят на гомо- и гетерополисахариды. Примером гомополисахаридов может служить крахмал, состоящий из остатков только одного типа (глюкозы), а примером гетерополисахаридов — гиалуроновая кислота, которая состоит из остатков глюкуроновой кислоты, чередующихся с -ацетилглюкозамином. [c.9]

    Амилазы встречаются только у растений (ячменя, пшеницы и др.). В отличие от а-амилаз они не воздействуют на внутренние участки молекулы (это только экзоамилазы ), а расщепляют ее, начиная с нередуцирующего свободного конца-отделяют мальтозу с редуцирующей группой. При воздействии -амилазы крахмал долгое время сохраняет способность окрашиваться иодом, но быстро осахаривается. Гидролиз приостанавливается лишь после того, как будет расщеплена примерно половина амилопектина. Образовавшийся остаток называют -кон-цееым декстрином. Если амило-1,6-глюкозидаза со своей стороны обеспечивает разрыв цепей в точках ветвления молекулы, то происходит полное расщ ление полисахарида до мальтозы. Мальтоза может гидро лизова1>6я вне клетки под действием мальтазы. При наличии соответствующих пермеаз мальтоза и низшие олигомеры поступают в клетку и подвергаются здесь фосфоролитическому расщеплению. [c.411]


    Соединения фосфора играют важную роль в дыхании и размножении растений. В пересчете на Р2О5 содержание фосфора в некоторых частях растений достигает 1,6%. Усиление питания фосфором повышает засухоустойчивость и морозостойкость растений и увеличивает содержание в них ценных веществ — крахмала в картофеле, сахарозы в сахарной свекле и т. п. Восприимчивость растением фосфорных удобрений, являющихся солями фосфорных кислот, зависит от их растворимости и от характера почв, в первую очередь от кислотности почв. Наличие в почве значительного запаса подвижной (усвояемой растениями) формы фосфора способствует хорошему использованию других удобрений — азотных и калийных. Одним из методов оценки усвояемости, содержащейся в удобрении Р2О5 является растворимость фосфатных соединений в искусственных растворах, кислотность которых близка к кислотности почвенных растворов (стр. 30). Содержание фосфора в фосфорных удобрениях принято выражать в пересчете на Р2О5. [c.20]

    Очень мало известно о наличии в растениях соединений кремния иных, че.м свободный кремнезем. Малфитано и Катуаре [72] сообщили, что в золе специально очищенного картофеля и крахмала нашли ЗЮг. Это дает основание предполагать, что кремнезем может присутствовать в форме химического соединения о крахмалом. Энгель [73] изучал природу кремнезема в соломе рж1 и продемонстрировал наличие органических комплексов кремнезема. С горячей водой или метиловым спиртом после подготовки с метанолбензоловой смесью можно получить лабильные органические соединения кремнезе.ма из соломы. Эти составы легко превращаются в неорганические нерастворимые полимерные формь кремнезема. Было также получено небольшое количество эфир-растворимого органического кремнеземистого комплекса, в котором галактоза присутствовала в пропорции две грамм-молекулы кремнезема на грамм-молекулу сахара. Остался неразрешенным вопрос состоял ли кремнеземный комплекс в эфирном экстракте из жирных компонентов и фосфорной кислоты вместе с небольшим количеством пентозы, связанной более тесным образом. После дальнейшего роста ржаная солома содержала другой кремнеземный комплекс, в котором отношение 5102 к галактозе равнялось 1 1. Очевидно, что кремневая кислота соединяется с компонентами сахара, а также и с другими компонентами физиологической структуры. Около 18% кремнезема в структуре ржаной соломы должно соединиться с целлюлозой решетчатой структуры, так как именно такое количество кремнезема отделяется при растворении целлюлозы в медноаммиачном растворе. [c.275]

    Все эмпирически известное по поводу энзимов в клетках растений не имеет непосредственного отношения к этим гипотетическим катализаторам. Данные, имеющиеся в нашем распоряжении, касаются хорошо известных энзимов, вроде каталазы, карбоангидразы, фос-форилазы, амилазы, мальтазы и инвертазы, которые или вообще не имеют отношения к синтезу углеводов, или участвуют лишь в его заключительных стадиях (образование и разлоягение сахарозы и крахмала). О наличии энзимов, превращающих углеводы в зеленых листьях, кратко говорилось в главе П1. Здесь мы добавим немногие данные по другим энзималг, найденным в выделенном веществе хлоропластов [97, 98, 105]. [c.381]

    Растения, поглощая из воздуха СОг, а из почвы НгО, с помощью энергии солнечных лучей и сложнейшего процесса фотосинтеза, происходящего в зеленом листе, превращают их в органические вещества, богатые энергией углеводы (сахар, крахмал, клет-чатка), жиры, белки, витамины, которые являются основой жизни людей и животных. В качестве побочного продукта этой сложнейшей химической фабрики растений выделяется в атмосферу свободный кислород. Выходит, что состав атмосферы нашей планеты зависит от растительного мира, от наличия же кислорода находится в прямой зависимости весь животный мир. Так устанавливается взаимосвязь между растениями, атмосферой и животными организмами. Продукты фотосинтеза используются растениями на их текущие потребности жизни (дыхание), основная же масса этих продуктов откладывается как запас в клубнях, плодах и т. д. Таким образом, растения являются своеобразным аккумулятором солнечной энергии. [c.148]

    Недавно было обнаружено, что форма, химические свойства и кристаллическая структура крахмальных зерен определяются многими генами [19], причем на эти признаки влияют также факторы окружающей среды в период развития зерна крахмала. Классическая работа Негели [128] положила начало интенсивному изучению расположения слоев в крахмальных зернах амилопластов. Вначале предполагали, что наличие чередующихся слоев, расположенных в зернах крахмала в радиальном направлении, обусловлено то высоким, то низким содержанием воды. Фрей-Висслинг [65] предположил, что наблюдаемые с помощью микроскопа структурные различия обусловлены изменением показателя преломления, который оказывается более высоким во внутренней части слоя и более низким — в его наружной части, причем имеет место резкое скачкообразное повышение показателя преломления в следующем слое. Слоистое строение крахмальных зерен картофеля, кукурузы и сорго [171], а также эндосперма злаков [34] окончательно доказано исследованиями с применением электронного микроскопа. Вполне очевидно, что содержание воды не единственный фактор, определяющий структурные особенности зерен крахмала, поскольку для исследований в электронном микроскопе использовались высушенные образцы. Бак-хайзен [22] был сторонником предположения, согласно которому образование слоев обусловлено отложением крахмала в разное время суток, причем крахмал, откладывающийся в дневное время, отличается высоким показателем преломления. Он привел данные, показывающие, что при неизменных внешних условиях во время роста у пшеницы формируются крахмальные зерна, лишенные видимой слоистой структуры. Эти данные были подтверждены электронно-микроскопическим исследованием образования зерен крахмала в эндосперме ячменя и пшеницы, произраставших в постоянных условиях [34, 36]. Однако микроскопические и электронно-микроскопические исследования клубней картофеля [36, 148] и РеШота [32] дали совсем иную картину. При выращивании этих растений в тщательно контролируемых условиях освещения и температуры их крахмальные зерна обладали слоистостью, идентичной слоистости нативного крахмала, который образовывался в нормальных полевых условиях то же было установлено [c.143]

    Для ферментов из мышц и из растений необходимы разные затравки. В случае фосфорилазы картофеля активной затравкой с наименьшим размером молекул служит мальтотриоза, однако она малоактивна. Высшие мальтодекстрины, а именно мальтотетраоза, мальтопентаоза и мальтогексаоза, значительно более эффективны, их затравочная активность фактически равна активности крахмала [170]. При наличии эффективной затравки синтез амилозы протекает по механизму, при котором все цепи затравки удлиняются примерно с одинаковой скоростью. В случае мышечной фосфорилазы в качестве затравки могут служить также разветвленные полисахариды, такие, как гликоген или амилопектин, тогда как амилаза и мальтодекстрин оказываются неактивными. [c.149]

    При удобрении растений микроэлементами не только повышается урожай, но и улучшается качество продукции сельскохозяйственных культур увеличивается номерность волокна. чьна и конопли, повышается содержание сахара в корнях сахарной свеклы, витамшюв в овощах, крахмала в клубнях картофеля, жпра и белка в семенах ряда культур. При наличии микроэлементов растения лучше исполь- [c.248]

    При удобрении растений микроэлементами не только повышается урожай, но и улучшается качество продукции сельскохозяйственных культур увеличивается но-мерность волокна льна и конопли, повышается содержание сахара в корнях сахарной свеклы, витаминов в овощах, крахмала в клубнях картофеля, жира и белка в семенах ряда культур. При наличии микроэлементов растения лучше используют азотные, фосфорные и калийные минеральные удобрения. Микроэлементы предохраняют растения от ряда болезней сахарную и кормовую свеклу от гнили сердечка, лен от бактериоза, злаковые растения на торфяных и осушенных болотных почвах от болезни, вызываемой недостатком меди они способствуют снижению поражаемостп продуктов растениевод- [c.234]

    Удобрения сильно влияют на качество клубнелуковиц, на содержание в них крахмала, сахара, от наличия которых зависит леж-костк клубнелуковиц при хранении. Под влиянием удобрений изменяется содержание витамина С в растениях. [c.260]

    Фитотоксичность гербицида выражается в нарушении фотосинтеза при образовании моносахаров и крахмала. Устойчивость кукурузы к препарату объясняется наличием в этом растении ферментов, способных разлагать его на безвредные для нее продукты. [c.423]

    Следует считать доказанным, что самые разнообразные по своей химической природе соединения могут транспортироваться в растении как по флоэме, так и по ксилеме. Направление тока веществ зависит от больщого числа разнообразных факторов, например, от обеспеченности минеральным питанием и водой, от условий освещения, интенсивности транспирации, возраста растения, его общефизиологического состояния и т. д. Так, по данным опытов А, Л. Курсанова и др., передвижение азотистых веществ по ситовидным трубкам флоэмы в восходящем направлении стимулируется наличием у растения органов, способных концентрировать эти соединения в своих тканях. Роль таких органов выполняют созревающие семена, где, как известно, осуществляется интенсивный синтез белков, крахмала и жиров. При погружении растений пщеницы и ржи (в начале восковой спелости семян) в растворы аминокислот, свыше 80% всего поглощенного ими азота сосредоточивалось в семенах, тогда как стебель в этом случае как бы выполнял только роль проводника. [c.488]

    Количество пыльцы в пыльниках многих покрытосеменных растений (особенно анемофильных) очень велико. Так, одно растение кукурузы в среднем способно производить до 50 млн. пыльцевых зерен. Главнейшие запасные вещества зрелой пыльцы— крахмал и жиры. Кроме того, в пыльце многих покрытосеменных обнаружены белки, нуклеиновые кислоты, аминокислоты, сахара, каротин и каротиноиды, гетероауксин, аскорбиновая кислота, а из ферментов — пероксидаза, циггохромоксида-за, каталаза, амилаза, диастаза, инулаза, мальтаза, протеаза, липаза, нуклеаза, карбоангидраза, карбоксилаза, редуктаза, ри1бонуклеаза и др. У некоторых видов отмечено также наличие неорганических веществ, в частности фосфора, железа, меди, магния, натрия, кальция и некоторых других. [c.162]

    Условия выращивания — питания и водоснабжения — в значительной мере влияют на химический состав клубней картофеля. Бесхлорные калийные удобрения способствуют биосинтезу крахмала. Картофель очень чувствителен к наличию хлора в почве. Вносимый в почву в виде хлористого калия, он вызывает глубокие изменения в обмене веществ растений картофеля, в результате чего снижается урожай и ухудшаются вкусовые н кулинарные качества клубней. Хлоридные формы удобрений повышают интенсивность потемнения сырых и вареных клубней. Потемнение мякоти сырых клубней картофеля связывают с ферментативным окислением фенольных соединений (главным образом тирозина) при участии дифенолоксидаз. Эти формы удобрений увеличивают концентрацию хлорогеновой кислоты в клуб-ня.х. Почернение мякоти клубней после варки обусловливается образованием комплекса иона трехвалентного железа и орто-днгидрофенола. Лимонная кислота образует с л<елезом бесцветный комплекс, ослабляя степень почернения клубней. Увеличение содержания калия в клубнях при внесении сульфатных форм удобрений стимулирует биосинтез и накопление лимонной кислоты, в результате потемнение клубней при варке уменьшается. Исследования Р. Холидея показали, что недостаток ие только калия, но и фосфора и кальция усиливает почернение картофеля при варке. Склонность к нему возрастает при высоком содержании железа в почве. [c.496]


Смотреть страницы где упоминается термин Крахмал наличие в растениях: [c.32]    [c.32]    [c.158]    [c.78]    [c.665]    [c.20]    [c.348]    [c.160]   
Фотосинтез 1951 (1951) -- [ c.47 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал



© 2025 chem21.info Реклама на сайте