Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль механических потерь

    Е" = (<То/ о) модуль механических потерь (модуль внутреннего трения), связанный с механическими потерями за полуцикл деформации Aw=e"k e ) яри этом [c.211]

    У кристаллических полимеров падение модуля в области стеклования значительно меньше, чем у стеклообразных обычно от 10 всего до 10 или 10 дин/см . Изменение модуля механических потерь с частотой или температурой также происходит более плавно, обнаруживая значительно более широкий спектр распределения времен релаксации. [c.130]


    Таким образом, вблизи температуры стеклования полимеры обладают максимальными значениями модуля механических потерь и б, которые являются мерой рассеянной энергии. Упрощая, можно сказать, что потери энергии при этих температурах максимальны. С помощью полимеров, Тд которых находится вблизи температуры эксплуатации, может быть снижен уровень шумов и вибраций [59, 60, 83, 735, 741, 978]. Однако для гомополимеров рабочая температурная область (при постоянной частоте) обычно является довольно узкой, соответствуя интервалу в 20—30 °С вблизи их температуры стеклования. [c.397]

Рис. 25.4. Зависимость температуры, соответствующей положению пика модуля механических потерь, от относительной влажности. Рис. 25.4. <a href="/info/12832">Зависимость температуры</a>, соответствующей положению пика <a href="/info/713606">модуля механических потерь</a>, от относительной влажности.
    Динамические методы весьма перспективны для изучения свойств граничных слоев. Они позволяют быстро и точно определить параметры, характеризующие структурно-механические свойства граничных слоев жидкостей такие, как динамический модуль сдвига, тангенс угла механических потерь, вязкость и т. п. [c.74]

    Основные особенности резины как конструкционного материала малые значения модулей при сдвиге, растяжении и сжатии большое влияние длительности действия приложенной нагрузки и температурного фактора на зависимость напряжение-деформация практически постоянный объем при деформации значительные механические потери при циклических деформациях. [c.5]

    Понять причину механических потерь можно, обратившись к рис. II. 2. При больщих частотах воздействия деформация (связанная с молекулярными перестройками) не успевает произойти и расходуется лишь упругая энергия (вещественная часть модуля велика). При очень малых частотах воздействия (говоря о больших и малых частотах все время надо помнить о принципе ТВЭ) происходят лишь жидкоподобные — высокоэластические или вязкие (необратимые) — деформации, причем фазы деформаций и напряжений совпадают, и расход энергии снова невелик, как невелика и вещественная часть модуля. [c.97]


    Резонансные эффекты разыгрываются в переходной области значительная часть энергии расходуется на молекулярные перестройки, а фазы напряжений и деформаций не совпадают. Тангенс угла механических потерь, численно равный отношению мнимой и вещественной компонент динамического модуля, характеризует диссипацию энергии в переходной области [38, с. 53]. [c.97]

    Цель работы. Получение кривых зависимости модуля кручения и тангенса угла механических потерь аморфных полимеров от температуры. [c.161]

    Для расчета модуля кручения С и тангенса угла механических потерь б используют формулы, полученные при решении уравнения для свободно-затухающих колебаний комбинированной системы  [c.162]

    Задание. Проанализировать характер кривой зависимости модуля кручения от температуры при заданном моменте инерции системы определить температурные области переходов полимеров из одного физического состояния в другое проанализировать полученную зависимость тангенса угла механических потерь от температуры при заданном моменте инерции системы объяснить смещение температур стеклования полимеров при изменении момента инерции системы. [c.163]

    Термомеханические кривые. По кривой, полученной в координатах механические свойства — температура, находят температуру механического стеклования, которая зависит от времени действия силы. Так, Гс натурального каучука равна —56° при частоте действия силы (о==0,167 С и —14° при со = 2-10 = с . Установлено, однако, что если время действия силы не выходит за пределы от нескольких секунд до десятков минут, то значение Те практически совпадает с температурой структурного стеклования. Учитывая, что точность определения температуры стеклования часто составляет (0,5—Г), временные интервалы действия силы можно еще более увеличить без заметного изменения значения Гс.. Термомеханический метод определения Гс наиболее широко распространен благодаря его простоте. Определяют зависимость от температуры разных механических показателей, таких, как модуль, деформация, твердость, податливость, тангенс угла механических потерь. Последний особенно предпочтителен, поскольку зависимость —Г выражается кривой с максимумом, по которому можно более точно определить Тг, чем по другим термомеханическим кривым, на которых в точке стеклования наблюдается перегиб. [c.145]

Рис. 63. Зависимость динамического модуля упругости (/, 2) и тангенса угла механических потерь 3, 4) от темнературы а — битум, б — битум с ДСТ Рис. 63. <a href="/info/958736">Зависимость динамического модуля</a> упругости (/, 2) и тангенса угла <a href="/info/21906">механических потерь</a> 3, 4) от темнературы а — битум, б — битум с ДСТ
    ДИНАМИЧЕСКИЙ МОДУЛЬ УПРУГОСТИ и КОЭФФИЦИЕНТ МЕХАНИЧЕСКИХ ПОТЕРЬ [c.107]

    Выше уже упоминалось, что модуль упругости изменяется при изменении скорости деформации испытываемого образца и что это вытекает из временной зависимости деформации от напряжения. Если напряжение изменяется периодически с относительно малой амплитудой и если известно, как деформация отстает от напряжения, то можно вычислить динамический модуль упругости О и коэффициент механических потерь б, который характеризует способность материала поглощать колебания. Динамический модуль упругости возрастает с повышением частоты синусоидального напряжения, а коэффициент потерь обычно проходит через несколько областей, в которых материал обнаруживает максимальное поглощение колебаний. Эти характеристические частоты соответствуют частотам отдельных атомных групп в цепи. Определение зависимости динамического модуля упругости и коэффициента механических потерь от температуры в диапазоне от очень низкой до близкой к температуре плавления полимера дает представление о температурном интервале, в котором наблюдается увеличение подвижности характеристических групп макромолекул, сопровождаемое заметными изменениями свойств полимера. Этот метод, [c.107]

Рис. 3.10. Зависимость модуля сдвига и фактора механических потерь в) от температуры для ПА 6 с различным содержание. влаги Рис. 3.10. <a href="/info/700234">Зависимость модуля</a> сдвига и <a href="/info/73240">фактора механических</a> потерь в) от температуры для ПА 6 с <a href="/info/201414">различным содержание</a>. влаги
    Приборы, работающие в режиме вынужденных нерезонансных колебаний (колебания возбуждаются в образце на любой произвольной частоте). Механические потери и модули рассчитывают по амплитуде деформации и разности фаз между напряжением и деформацией. [c.378]


    Анализ зависимости фактора механических потерь или величины модуля от температуры в области температур от минус 80 °С до комнатной при частоте воздействия 1 Гц наряду с информацией об области стеклования позволяет судить о температурной зависимости действительной составляющей динамического модуля резины [21]. [c.509]

    Механические потери в области высокоэластического плато определяются разрушением и рекомбинацией физических узлов, это значит, что механические потери Агю и релаксирующая часть модуля Е t) связаны между собой. Эти представления подтверждаются данными работы по самопроизвольному сокращению резин [146], из которой следует, что механические потери Дш, а следовательно, и неравновесная часть модуля Е ( ) в случае редкой сетки не зависят от того, сшит или не сшит полимер. Но модуль высокоэластичности Е, совпадающий с Е t) для несшитого эластомера, существенно больше для сшитого из-за наличия равновесного модуля. Например, для сши- [c.222]

    Упруго-гистерезисные свойства вулканизаторов могут быть охарактеризованы динамическим модулем и одним из показателей внутреннего трения (тангенсом угла механических потерь или модулем внутреннего трения [87]). [c.101]

    Из этого выражения следует, что при напряжении о могут отслаиваться лишь фрагменты, размер которых превышает некоторое критическое значение. Если энергия расслаивания настолько низка, что одиночное волокно отслаивается от матрицы по всей длине, то свойства композита не должны отличаться от свойств волокон, не скрепленных матрицей. Установлена [54] линейная корреляция между прочностью органопластика с высокой степенью армирования при осевом растяжении и энергией расслаивания. Ограничением для получения композитов с большой энергией является специфика поведения тонких пленок полимеров. Необходимо помнить, что упругие характеристики матрицы при создании композитов должны сочетаться с достаточно большой способностью к диссипации энергии. Последний показатель можно выразить через модуль механических потерь связующего. Показано, что чем выше значение этой характеристики, тем меньше размер микротрещин в связующел в месте разрывов волокна [55]. Методом акустической эмиссии было показано, что разрывы волокон, приводящие к появлени <-очага разрушения, происходят тем раньше, че.м меньше модуЛ) механических потерь связующего. [c.56]

    При термообработке выше температуры стеклования полимера в нем протекают релаксационные процессы, которые влияют на остаточные напряжения, как это было показано для полиэпоксидов (см. гл. 3). Высокие упругие характеристики полимера в адгезионном соединении должны сочетаться с его способностью к рассеиванию энергии с целью иерераспределения концентрации напряжений в композите, клеевом соединении и др. Способность к диссипации энергии может выражаться модулем механических потерь. При исследовании влияния диссипативных характеристик полимерной матрицы в углепластике на кинетику накопления повреждений показано [269], что размер микротрещин в блоке матрицы в месте разрывов одиночного волокна уменьшается с повышением значения модуля механических потерь связующего. Более ранняя локализация разрывов волокон, приводящая к формированию очага разрушения, происходит в углепластике на основе связующего с низким значением модуля механических потерь. Таким образом, связующее должно сочетать высокие упругие и диссипативные показатели. Использование грунтов, аппретов, по существу, приводит к такому же результату. В большинстве случаев их применение способствует перераспределению напряжений и соответственно более позднему появлению очагов разрущения. Если такое средство одновременно повышает устойчивость связей полимер — субстрат, то это является дополнительным благоприятным фактором. [c.206]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Ти. с определяется как температура, которой соответствует максимум механических потерь. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет На Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникакзт качественно новые явления (вынужденноэластические деформации и разрушение). Закономерности, аналогичные представленным на рис. II. 11 и II. 12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные [c.97]

    Природа низкотемпературного максимума силы трения объясняется существованием максимума механических потерь, так как роль гистерезисных потерь при трении полимера в стеклообразном состоянии возрастает. При переходе полимеров из стеклообразного в высокоэластическое состояние изменяется молекулярный механизм трения, связанного с механическими потерями в объеме, что приводит к появлению резко выраженного максимума. Природа этого явления состоит в следующем. Упругие свойства полимеров в высокоэластическом состоянии практически не изменяются (т. е. модуль упругости onst), поэтому 5ф при постоянной нагрузке остается практически постоянной. При возрастании модуля упругости в результате понижения температуры 5ф резко уменьшается [c.365]

    При динамических измерениях можно определять энергию, запасаемую в полимере и обратимо отдаваемую им в каждом цикле. Мерой этой энергии служг г модуль упругости Одновременно определяется сопротивленне полимера деформированию, обуслов-ленное диссипацией энергии, — переходом некоторой части работы деформирования в тепло. Эта часть сопротивления тела деформированию характеризуется модулем потерь О". Отношение Ср /С называется тангенсом угла механических потерь 1дб, так как именно вследствие диссипативных потерь в каждом цикле происходит сдвиг деформации относительно напряжения на определен-цьш фазовый угол, притом тем больший, чем больше потери. Модуль потерь и модуль упругости имеют одинаковую размерность дин1ем . Отношение модуля потерь к круговой частоте 0 7(й —т) называется динамической вязкостью Она имеет ту же размерность, что и коэффициент вязкости в уравнении НьютОна, [c.263]

    Свойства полимерно-битухмных систем значительно отличаются от свойств битумов. Введение 2% ДСТ приводит к появлению у битумов П типа тиксотропных свойств, ранее отсутствовавших, и повышению этих свойств у битумов I и П1 типов. С увеличением температуры динамической модуль упругости (рис. 63) снижается у битума более резко, чем у полимерно-битумной системы, а тангенс угла механических потерь б резко возрастает, в то время как в исследованном температурном интервале 1дб полимерно-битумной системы практически не зависит от температуры, что свидетельствует о высокой теплоустойчивости этого материала. [c.245]

    Наибольшее распространение, по-видимому, получил динамический ме-нический анализ, согласно которому измеряются температурные зависимо-и действительной Е и мнимой Е" частей комплексного модуля упругости = Е + /Е", а также тангенса угла механических потерь tgSj = Е"/Е (рис.34). мпературная зависимость tgSg обнаруживает несколько максиму мов, из ко-рых наиболее интенсивный (и высокотемпературный) связан с переходом стеклообразного состояния в высокоэластичесюе. [c.111]

    Действие многощелевого спектрометра можно понять, если представить обычный монохроматор, в котором узкий интервал частот проходит через выходную щель и попадает йа детектор. Для простоты мы условно считаем, что излучение монохроматично и имеет частоту Уо. Поскольку монохроматор стигматичен при Уо, излучение, проходящее через входную щель, будет попадать на соответствующую точку на выходной щели. Например, если нижняя часть входной щели закрыта, то у выходной щели будет затемнена верхняя часть. Представим вторую входную щель, также освещенную источником света,. находящуюся в плоскости первой щели и смещенную в сторону на малое расстояние Пучок излучения из второй входной щели с той же частотой Уо будет попадать на вторую выходную щель, также смещенную на расстояние Л по отношению к первой выходной щели. При этом энергия, достигающая детектора, удваивается без потери в разрешении. Теперь возникает проблема излучение некоторой другой частоты (не Уо) проходит через входную щель 1 и выходную щель 2, а также через входную щель 2 и выходную щель 1. Каким же путем необходимо закодировать излучение от каждой щели так, чтобы спектрометр реагировал только на тот свет, который прошел через соответствующие входную и выходную щели Голей решил эту проблему, создав систему щелевых вырезов во вращающихся дисках, которые действовали и как щель, и как прерыватель. Прерыватель был сконструирован таким образом, что частота прерывания нежелательного излучения (например, пропущенного входной щелью 1 и выходной щелью 3) отличалась от частоты модуля-Щ1И полезного излучения (например, прошедшего через входную щель 2 и выходную щель 2) и выделялась соответствующим усилителем. Спектр сканировался как обычно - вращением зеркала Литтрова в монохроматоре. Голей демонстрировал 10-кратиое увеличение пропускающей способности против теоретического роста в 32 раза при 64 щелях. Увеличение было меньше ожидаемого из-за частичного перекрывания пучка осью прерывателя и других механических потерь света. [c.29]

    Приборы, работающие по принципу свободнозатухающих резонансных колебаний, частота которых при прочих равных условиях определяется только величиной модуля (жесткости) образца. Известно, что в стеклообразных полимерах частота выше, чем в высокоэластических. По затуханию колебаний рассчитывают механические потери, а по частоте - динамический модуль. [c.378]

    При шумении механических потерь пик tg 5 (при Тс) всегда ниже для наполненных смесей, что может быть связано с резким возрастанием динамического модуля эластичности наполненных композиций в области высокоэластичности. Этот эффект определяется типом полимера и наполнителя, характером процесса смешения. [c.581]

    В большинстве случаев трехмерный аморфный полимер можно рассматривать как застеклованную жидкость, т. е. структура полимера соответствует в значительной мере структуре расплава перед гелеобразованием, так как после перехода полимера р стеклообразное состояние выделение частиц новой фазы невозможно. Вероятно, разделение фаз может наблюдаться в некоторой степени и в течение определенного времени после гелеобра-зования, пока температура стеклования отверждающейся системы выше температуры отверждения и полимер имеет студнеобразную консистенцию с малым модулем упругости. Процесс образования новых фаз в таких системах подобен ликвидации в силикатных стеклах [85]. Разделение фаз может быть обнаружено не только микроскопически, но и другими методами, например по появлению новых максимумов на кривых температурной зависимости механических потерь (рис. 3.4). [c.61]

    Для эпоксидно-фенольных композиций характерно небольшгм снижение модуля сдвига при нагревании и отсутствие отчетлив выраженного максимума на кривой температурной зависимост 1 тангенса угла механических потерь [92]. При нагревании от вержденных композиций выше Тс не наблюдается заметного увс личения деформации полимера при нагружении из-за высоко жесткости пространственной сетки. [c.140]


Смотреть страницы где упоминается термин Модуль механических потерь: [c.244]    [c.39]    [c.87]    [c.40]    [c.58]    [c.60]    [c.300]    [c.300]    [c.107]    [c.500]    [c.225]    [c.153]    [c.219]    [c.134]   
Вода в полимерах (1984) -- [ c.417 , c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Модуль

Потери механические



© 2025 chem21.info Реклама на сайте