Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость коррозии атмосферной

    Наиболее трудоемки работы по подготовке к окраске и окраска баллонов. Наружная поверхность стальных баллонов для сжиженных газов подвергается атмосферной коррозии. Скорость коррозии незащищенной углеродистой стали зависит от характеристики атмосферы и может достигать 0,17 мм/год. Защита наружной [c.87]


    Пленки ржавчины, образующиеся в атмосферных условиях, могут иметь защитные свойства поэтому скорость коррозии со временем снижается (рис. 8.1). Это справедливо, хотя и в меньшей степени, для чистого железа, скорость коррозии которого относительно высока по сравнению с более устойчивыми медьсодержащими или низколегированными сталями. На этих сплавах образуются пленки с плотной структурой и хорошей адгезией, тогда как на чистом железе продукты коррозии рыхлые порошкообразные. Через некоторое время скорость коррозии достигает устойчивого значения и обычно слабо меняется в дальнейшем. Это свойственно и другим металлам, о чем свидетельствуют данные, полученные Американским обществом по испытанию материалов (табл. 8.2). Различия в скорости коррозии за 10 и 20 лет находятся в пределах ошибки эксперимента. [c.171]

    Характер развития атмосферной коррозии во времени у разных металлов заметно отличается вследствие неодинаковости защитных свойств образующихся продуктов коррозии. Свинец и алюминий образуют хорошую защитную пленку из продуктов коррозии, и зависимость величины коррозии от времени для этих металлов имеет вид затухающей логарифмической кривой (рис. 138). Защитные свойства продуктов коррозии меди, олова и особенно никеля несколько ниже. Скорость коррозии цинка по мере образования слоя продуктов коррозии сначала уменьшается во времени,. а затем остается постоянной. Для железа в [c.180]

    Для определения влагопроницаемости полиэтиленовых пленок в атмосферных условиях и скорости коррозии образцы устанавливали на специальные стенды в открытой атмосфере. Периодически (1 раз в две недели) образцы взвешивали. Кроме того, испытывались покрытия на трубчатых образцах с замерами изменения переходного сопротивления во времени. [c.140]

    Сравнение скорости атмосферной коррозии со средними скоростями коррозии в морской воде и в почвах  [c.174]

    В табл. VI.5 приведены сравнительные данные скорости Коррозии цинковых н алюминиевых покрытий в атмосферных условиях, полученные в результате двадцатилетних испытаний Американским обществом испытаний материалов. [c.199]

    Образующиеся продукты атмосферной коррозии металлов, как правило, остаются на металле, хорошо с ним сцепленными, и оказывают большее (на свинце и алюминии) или меньшее (на никеле и цинке) защитное действие, уменьшая скорость коррозии со временем (рис. 271). Ускорение коррозии железа в начальный период обусловлено большой гигроскопичностью продуктов коррозии (ржавчины), защитное действие которых начинает сказываться только при значительной толщине. [c.381]


    При испытании стали марки СтЗ при постоянной 80%-ной относительной влажности воздуха наблюдался экспоненциальный рост скорости коррозии с увеличением температуры (рис. 273). Вычисленное из опытных данных значение эффективной энергии активации процесса (30 ккал/г-атом) соответствует электрохимической поляризации и подтверждает отсутствие диффузионного контроля в условиях влажной атмосферной коррозии. [c.383]

    Коррозия в морской атмосфере отличается от коррозии в морской воде в основном тем, что она связана с малой толщиной слоя электролита на поверхности корродирующего металла. Скорость морской атмосферной коррозии зависит от влажности воздуха, количества осадков, температуры, различных загрязнений и агрегатного состояния воды. При относительной влажности воздуха около 100%, а также при непосредственном попадании влаги на металл коррозия металлов относится к типу мокрой атмосферной коррозии. [c.188]

    Время года и количество атмосферных осадков оказывают влияние на скорость коррозии металлов в воздухе. В осенние месяцы, более дождливые, коррозия протекает интенсивнее, чем в летние месяцы. [c.181]

    В сточные нефтепромысловые воды кислород попадает при подготовке нефти и воды на стадии обессоливания нефти он вносится пресными водами, при смешении потоков сточной воды с дождевой, технической или канализационной водой, захватывается из воздуха -при подаче воды в открытые резервуары атмосферный воздух может попасть в сточные пластовые воды при нарушении технологического режима эксплуатации центробежных насосов. При этом скорость коррозии стали возрастает в десятки раз. [c.161]

    Влага на поверхности металла, возникшая в результате конденсации или попадания осадков, является электролитом для данного элемента. Кучера и др. для определения скоростей атмосферной коррозии предложили установку, представленную на рис. 8.4 [27, 28]. Элемент В расположен на расстоянии около 1 м над поверхностью земли, под углом 45°. В течение длительных периодов времени электронный интегратор регистрирует появление тока в элементе. Сопоставление результатов электрохимических измерений с параллельными гравиметрическими показало пригодность электрохимической методики для оценки быстрых изменений скорости коррозии [28]. [c.179]

    Легирование металлов. Легирование стали небольшими количествами меди, фосфора, никеля и хрома особенно эффективно для защиты от атмосферной коррозии. Добавление меди более эффективно в умеренном, чем в тропическом морском климате добавки хрома и никеля в сочетании с медью и фосфором повышают стойкость как в умеренном, так и в тропическом климате (табл. 8.5). Скорость коррозии конструкционных сталей в тропиках (например, в Панаме) в два и более раза выше, чем в умеренном климате (например, Кюр Бич), главным образом вследствие более высоких средних температур и относительной влажности. [c.180]

    Из большого числа факторов, определяющих скорость коррозии металлических деталей, находящихся в воздушной среде, наиболее важными являются влажность воздуха и состав воздушной атмосферы. Влага, оседающая на металлических поверхностях, всегда содержит растворенные соли и коррозионно-активные газы. Источники минерализации атмосферной влаги — мельчайшие твердые частицы минеральных веществ в виде солей морского и вулканического происхождения, находящиеся в атмосфере. Минерализация пленок влаги па металлических поверхностях происходит также за счет обогащения их продуктами коррозии. Большое значение для развития коррозии имеет непосредственное выпадение на поверхность металлических конструкций атмосферных осадков в виде дождя и снега, а также увлажнение конструкций вследствие обрызгивания и> морской или речной водой. [c.191]

    Кроме массовых (гравиметрических) способов измерения потерь металла при оценке скорости коррозии нередко прибегают к объемным (волюметрическим) способам. Это возможно в тех случаях, когда окисление металла сопровождается расходом или выделением газа. Так, при атмосферной коррозии расходуется кислород, а при кислотной выделяется водород. Объем израсходованного кислорода или выделившегося водорода пропорционален массе окислившегося металла. При этом следует помнить, что на 1 моль израсходованного кислорода окисляются 4 моля металла, а при выделении водорода на один моль водорода окисляются два моля металла. Измерение объема менее точно, чем взвешивание, но при массовом определении скорости коррозии необходимо прерывать испытание, удалять продукты коррозии и лишь после этого определять уменьшение массы образца. Поэтому найденная скорость коррозии представляет собой некоторую усредненную величину аа 1 ерйод испытания. При этом предполагается, что скорость процесса не изм яялась в течение опыта, что не всегда справедливо. За изменением объема газа в некоторой замкнутой системе можно следить, не прерывая испытания, что дает более содержательную информацию о кинетике процесса коррозии. Массовую потерю металла (г) при атмосферной и кислотной коррозии вычисляют по формуле [c.11]


    Как уже говорилось, некоторые металлы в определенных условиях переходят в пассивное состояние — на их поверхности образуются слои или пленки, состоящие из адсорбированного кислорода, из оксида данного металла или из его соли. Присутствие таких слоев и их структура сильно влияют на скорость коррозии металла в ряде случаев эти слои обладают защитным действием, вследствие чего металл корродирует лишь ничтожно медленно. В условиях атмосферного воздуха пассивирующие пленки образуются на хроме, никеле, алюминии, цинке. [c.690]

    После окончания опыта образцы осторожно снимают с крючков и взвешивают, при этом нужно следить, чтобы не было потерь продуктов коррозии. Зная площадь образца и время испытаний, скорость коррозии вычисляют по привесу. Определение скорости атмосферной, коррозии по убыли в весе представляет некоторые трудности, так как продукты коррозии плохо снимаются. [c.263]

    В определенных условиях атмосферная коррозия может протекать с гораздо ббльшей скоростью, чем в случае, когда металл погружен непосредственно в электролит. Так, известно, что атмосферная коррозия свай над уровнем моря превышает среднюю скорость коррозии стали в морской воде приблизительно в 5-6 раз. [c.5]

    Кроме характера и состава атмосферы, большое значение для развития атмосферной коррозии имеют климатические условия. Наблюдается заметная разница в коррозионном поведении металлов в разные периоды года. Так, в теплую погоду понижается относительная влажность, затрудняется конденсация влаги и происходит быстрое испарение ее, поэтому скорость коррозии уменьшается. Понижение температуры приводит к ускорению коррозионного процесса, так как облегчается конденсация влаги на поверхности металла и затрудняется ее испарение. Важную роль играет направление ветра. В зависимости от него может изменяться состав атмосферы ветры, дующие преимущественно из промышленных районов или с моря, способствуют обогащению атмосферы коррозионно-активными газами, частичками солей и влаги. [c.9]

    В Японии были проведены сопоставления результатов изучения атмосферной коррозии углеродистой стали с результатами замеров количества загрязняющих примесей воздуха и метеорологическими данными. Установлено, что наиболее высокая скорость коррозии наблюдалась в осенне-зимний период, так как в это время северо-западный муссон приносит с моря значительное количество хлоридов. Скорость коррозии в сельской местности в 2 раза больше, чем в прибрежной, и в 3 раза больше, чем в промышленной зоне. Содержание хлоридов, сульфатов и скорость ветра влияют на атмосферную коррозию меньше, чем температура воздуха, солнечная радиация и окислы серы. [c.9]

    Изменение свойств коррозионной среды пригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы. При атмосферной коррозии применяют хорошо адсорбирующиеся на металле вещества мо-ноэтаноламин, карбонат аммония, уротропин, нитрит натрия. Для нейтральной коррозионной среды и растворов солей в качестве ингибиторов используют неорганические соли хромовых кислот, фосфорной, кремниевой, азотной и азотистой кислот. В кислых средах используют органические ингибиторы, содержащие атомы азота, серы, фосфора, кислорода и группировки атомов с ненасыщенными связями. Защитное действие ингибиторов обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.693]

    Влияние разнообразных факторов на коррозионное поведение металлов не позволяет однозначно предсказать скорость коррозии различных металлов в атмосферных условиях. Она может колебаться в довольно широких пределах, как это следует из сравнительных данных (табл. 1). [c.13]

    В условиях высоких среднегодовых температур воздуха Средней Азии, небольшого количества атмосферных осадков температура и влажность грунтов существенно различаются по глубине, а сами грунты имеют высокую засоленность. Коррозия в этих условиях протекает крайне неравномерно с образованием глубоких каверн. Скорость коррозии составляет 2—2,5 мм/год, а в некоторых случаях достигает 5 мм/год. [c.183]

    Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в ч. I. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нес <ольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость (рис. 263), что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. [c.373]

    Введение сорбента улучшает качество бумаги-основы и, прежде всего, уменьшает скорость коррозии в водных экстрактах, что имеет большое значение при длительной эксплуатации бумажного упаковочного материала в условиях капиллярной конденсации или атмосферных осадков. Общий эффект улучшения свойств основы антикоррозионной бумаги зависит от типа взятого сорбента или наполнителя, условий его введения и закрепления в структуре бумаги. [c.113]

    Скорость коррозии металла при использовании нитро- и динитробензоатов определяется специфическим влиянием нитрогрупп в бензольном кольце, способных пассивировать поверхность металлоизделия за счет ускорения катодной реакции. Образование пленки на поверхности металла, а следовательно, и эффективность защитного действия указанных ингибиторов возрастает с увеличением числа нитрогрупп и позволяет защитить от атмосферной коррозии цветные металлы. Введение в молекулу ингибитора органических катионов, и, в частности, аминов, обладающих способностью хорошо адсорбироваться на поверхности металла, позволяет значительно усилить ингибирующее действие указанных составов. Отсутствие в бензольном кольце нитрогрупп лишает ингибитор его универсальности и делает его пригодным только для защиты от атмосферной коррозии черных металлов. [c.124]

    В условиях атмосферной коррозии латунь устойчива до температуры 500° С. В морской и пресной воде скорость коррозии латуни составляет 0,06—0.25 г-м за сутки. В неорганических кислотах латунь применять не рекомендуется. [c.36]

    К числу факторов, влияющих на скорость коррозии в атмосфере, не меньщую роль, чем степень влажности воздуха, играет остаи пленки, скондеиеированиой на металлической поверхности. Состав пленки и степень ее агрессивности зависят от степени загрязненности воздуха и характера этих загрязнений. В зависимости от этих условий, скорость атмосферной коррозии одного и того же металла или сплава может изменяться в десятки и сотни раз. [c.177]

    О влиянии характера атмосферы на коррозию металлов можно судить по следующим данным, приведенным С. Г. Веденки-ным. Сроки службы проводов связи в сельской местности и в районах промышленных предприятий (металлургических и химических заводов, электростанций и т.д.) резко отличаются. Так, в первом случае они ие теряют своей эксплуатационной пригодности в течение 50—60 лет, а во втором — срок службы проводов ограничивается 4—5 годами, т. е. скорость коррозии в этих условиях в 10—15 раз выше. При воздействии дымовых газог скорость атмосферной коррозии стали достигает иногда 0,4— 0,8 мм год. [c.177]

    Установлено также влияние ЗОо на скорость коррозии некоторых алюминиевых сплавов во влажном воздухе. Как это видно нз кривых, приведенных на рис. 136, алюминиевый сплав Д16 в отсутствие в воздухе примесей ЗОг достаточно устойчив в ус-лопиях атмосферной коррозии. Загр5/зненность индустриальной атмосферы другими агрессивными газами сказывается также [c.179]

    На скорость атмосферной коррозии значительно влияет контакт днух. металлов, обладающих различными значениями электродных потенциалов. Изучением механизма контактной коррозии применительно к алюминиевым и медным сплавам занимались в Советском Союзе И. Л. Розенфельд с сотрудниками (ИФХ АН СССР) и за рубежом К. Г. Комптон с сотрудниками. На G Hori этих исследований авторы рекомендуют следующие количественные показатели. Абсолютно допустимыми контактами являются такие, при которых скорость коррозии анода со-стапляет 0—50 гЦм -год), относительно допустимыми — при которых скорость коррозии составляет 50—150 г (м год)-, коп- [c.181]

    Олово — металл светло-серого цвета с атомной массой 118,7, валентностью 2 и 4, плотностью 7,3 г/сы удельное электросопротивление олова ОД 15 Ом-ым, температура плавления 232 °С. Для олова характерны высокие пластичность и вязкость, твердость оловянных покрытий колеблется от 120 до 200 МПа. Олово устойчиво в воде, не корродирует во влажном воздухе, даже содержащем сернистые соединения В минеральных кислотах скорость коррозии олова в значительной степени зависит от наличия Б растиорах кислорода, который резко увеличивает ее. Примеси с низким перенагряжекием водорода также усиливают коррозию олова. Стандартный электродный потенциал олова —0.14 В по отношению к его двухвалентным нонам и -1-0.01 В н четырехвалентиым. Относительно железа олово электроположительно, поэтому оно не защищает железо от атмосферной коррозии. Электрохимическую защиту от коррозии оловянные покрытия обеспечивают изделиям из медн. Оловянные покрытия — эффективный барьер для серы н азота [22, 31. 37, 44]. [c.83]

    Следует помнить, что во всех атмосферах, за исключением особо агрессивных, средняя скорость коррозии металлов в общем ниже, чем в природных водах или почвах. Это видно из табл. 8.3, где скорость коррозии стали, цинка и меди в трех различных атмосферах сравнивается со средней скоростью коррозии в морской воде и различных почвах. Кроме того, атмосферная коррозия равномерна, пассивирующиеся металлы (например, алюминий или нержавеющие стали) в этих условиях в меньшей степени подвержены питтингу, чем в воде или в почвах. [c.174]

    Данные, полученные Грэделом и др. [2] на стенде для испытаний на атмосферную коррозию [21], свидетельствуют, что скорость коррозии при воздействии OS и H S одинакова. Скорость образования сульфидной пленки в присутствии OS и влаги линейно зависит от полной выдержки , которая является произведением времени выдержки образца и средней концентрации OS. [c.177]

    При атмосферной коррозии малолегированных сталей около 3 г/дм в год металла превращается в ржавчину. Рассчитать линейную скорость коррозии. [c.206]

    Обычно атмосферную коррозию классифицируют по степени увлажненности металлической поверхности и различают три типа сухую, влажную и мокрую. При сухой атмосферной коррозии на поверхноста металла пленки электролита отсутствуют, скорость коррозии при этом мала и не вызьшает существенных разрушений металла. Мокрая и влажная [c.4]

    Скорости коррозии углеродистых и низколегированных сталей, а также чугунов в морской воде отличаются незначительно. Скорость коррозии углеродистой и низколегированном стали в морской воде при полном погружении и длительных испыганиях колеблется в пределах 0,08-0,12 мм/год, и максимальный глубинный показатель для стали без окалины составляет 0,3—0.4 мм/год. Уже после годичной выдержки достигается достаточно постоянное во времени значение скорости коррозии. Введение легирующих элеменюв. ю 5 % в сталь мало влияет на скорость коррозии. Исключение лреД 1авляет хром, начиная от 5 % хрома сильно растет местная коррозия стали. Легирование стали одной медью в условиях морской коррозии в отличие от атмосферной коррозии не дает положительных результатов. [c.19]

    Способ противокоррозионной защиты стальных конструкций и оборудования зависит от требуемого срока службы и агрессивности атмосфер. Во всех случаях сталь обнаруживает наименьшую коррозионную стойкость, и скорость коррозии стали при средней агрессивности атмосфер составляет 25-35 мкм/год, а при жестких условиях превышает 100 мкм. Большинство стальных конструкций в атмосферных условиях необходимо защитить покрытиями, наносимыми на углеродистую или низколегированную сталь, что дает возможность обеспечить более долговременную защиту. Наиболее широко используют металлические покрытия на основе алюминия и цинка, значительно повышающие срчк службы металлических конструкций в атмосферных условиях. [c.51]

    В атмосферных условиях латуни корродируют слабо. Скорость коррозии латуней в атмосфере составляет 0,0001—0,004 мм1год. Сухой пар слабо влияет на латунь. Однако скорость коррозии резко возрастает, если в паровом конденсате присутствуют кислород, двууглекислый газ или аммиак. Влажный насыщенный пар прн больших скоростях (порядка 1000 м1сек) вызывает на поверхности латуни ударную коррозию. [c.150]

    На правом образце промежуточное пространство было сухим. Поверхность стали проржавела, как и при атмосферной коррозии. Отслоение было вызвано электроосмотическим переносом молекул HjO и с последующей коррозией. Скорость коррозии не превышала I мкмХ Хгод и в техническом смысле ею можно было пренебречь, [c.172]


Смотреть страницы где упоминается термин Скорость коррозии атмосферной: [c.171]    [c.124]    [c.182]    [c.10]    [c.61]    [c.204]    [c.38]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия

Атмосферная коррозия металлов скорость

Влияние длительности пребывания электролита в щелях и зазорах на скорость атмосферной коррозии

Влияние продуктов саморастворения металла на скорость атмосферной коррозии

Влияние химического состава атмосферных осадков на скорость коррозии металлов

Влияние химического состава сплавов на скорость атмосферной коррозии

Внешние факторы, определяющие скорость атмосферной коррозии

Голубев, Н. Н. Игнатов. Влияние температуры на скорость коррозии металлов в атмосферных условиях

Прогнозирование скорости атмосферной коррозии

Скорость коррозии

Факторы, влияющие на скорость атмосферной коррозии

Факторы, влияющие на скорость атмосферной коррозии добавки малые легирующие

Факторы, влияющие на скорость атмосферной коррозии загрязнения

Факторы, влияющие на скорость атмосферной коррозии ориентация образца

Факторы, влияющие на скорость атмосферной коррозии продолжительность

Факторы, влияющие на скорость атмосферной коррозии состояние поверхности металла

Факторы, влияющие на скорость атмосферной коррозии температура

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний



© 2025 chem21.info Реклама на сайте